Aureliana Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bioinspired multifunctional hydrogel patch targeting inflammation and regeneration in chronic intestinal wounds. Biomaterials Science, 2021, 9, 6510-6527.	5.4	8
2	New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 33, 102353.	3.3	19
3	Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Biomedical Materials (Bristol), 2021, 16, 015011.	3.3	10
4	Engineering injectable vascularized tissues from the bottom-up: Dynamics of in-gel extra-spheroid dermal tissue assembly. Biomaterials, 2021, 279, 121222.	11.4	9
5	Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process. Materials Science and Engineering C, 2020, 108, 110400.	7.3	28
6	Antimicrobial Properties of Gallium(III)- and Iron(III)-Loaded Polysaccharides Affecting the Growth of <i>Escherichia coli</i> , <i>Staphylococcus aureus,</i> and <i>Pseudomonas aeruginosa</i> , In Vitro. ACS Applied Bio Materials, 2020, 3, 7589-7597.	4.6	16
7	Hydrophobic modification of bacterial cellulose using oxygen plasma treatment and chemical vapor deposition. Cellulose, 2020, 27, 10733-10746.	4.9	33
8	Multiplatform Protein Detection and Quantification Using Glutaraldehyde-Induced Fluorescence for 3D Systems. Journal of Fluorescence, 2019, 29, 1171-1181.	2.5	3
9	Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. International Journal of Biological Macromolecules, 2019, 136, 1219-1227.	7.5	17
10	Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). International Journal of Molecular Sciences, 2019, 20, 5693.	4.1	41
11	Novel sintering-free scaffolds obtained by additive manufacturing for concurrent bone regeneration and drug delivery: Proof of concept. Materials Science and Engineering C, 2019, 94, 426-436.	7.3	35
12	Extracellular matrix constitution and function for tissue regeneration and repair. , 2018, , 29-72.		8
13	A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Materials Horizons, 2018, 5, 1100-1111.	12.2	104
14	Biomechanical performance of hybrid electrospun structures for skin regeneration. Materials Science and Engineering C, 2018, 93, 816-827.	7.3	30
15	In situ crosslinked electrospun gelatin nanofibers for skin regeneration. European Polymer Journal, 2017, 95, 161-173.	5.4	67
16	Advances in bioprinted cell-laden hydrogels for skin tissue engineering. Biomanufacturing Reviews, 2017, 2, 1.	4.8	72
17	In vitro interaction of polymeric biomaterials with cells. , 2017, , 285-315.		3
18	Correction: Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 8422-8422	5.8	3

AURELIANA SOUSA

#	Article	IF	CITATIONS
19	Biofunctionalized pectin hydrogels as 3D cellular microenvironments. Journal of Materials Chemistry B, 2015, 3, 2096-2108.	5.8	74
20	Injectable MMP-Sensitive Alginate Hydrogels as hMSC Delivery Systems. Biomacromolecules, 2014, 15, 380-390.	5.4	93
21	γ-Tubulin ring complexes regulate microtubule plus end dynamics. Journal of Cell Biology, 2009, 187, 327-334.	5.2	54
22	TheDrosophilaCLASP homologue, Mast/Orbit regulates the dynamic behaviour of interphase microtubules by promoting the pause state. Cytoskeleton, 2007, 64, 605-620.	4.4	51
23	Generation of scaffold-supported microtissues inside cell-instructive hydrogels. Frontiers in Bioengineering and Biotechnology, 0, 4, .	4.1	0