Eric G Booth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230311/publications.pdf

Version: 2024-02-01

394390 454934 1,163 29 19 30 citations h-index g-index papers 30 30 30 1994 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Changing forest water yields in response to climate warming: results from longâ€ŧerm experimental watershed sites across North America. Global Change Biology, 2014, 20, 3191-3208.	9.5	147
2	Untangling the effects of shallow groundwater and soil texture as drivers of subfieldâ€scale yield variability. Water Resources Research, 2015, 51, 6338-6358.	4.2	91
3	Environmental outcomes of the US Renewable Fuel Standard. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	86
4	Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnology and Oceanography, 2018, 63, 1221-1233.	3.1	84
5	Understanding relationships among ecosystem services across spatial scales and over time. Environmental Research Letters, 2018, 13, 054020.	5.2	76
6	Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA. Ecology and Society, 2015, 20, .	2.3	70
7	Extreme daily loads: role in annual phosphorus input to a north temperate lake. Aquatic Sciences, 2015, 77, 71-79.	1.5	63
8	The Influence of Legacy P on Lake Water Quality in a Midwestern Agricultural Watershed. Ecosystems, 2017, 20, 1468-1482.	3.4	60
9	Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology, 2011, 126, 364-376.	2.6	56
10	From qualitative to quantitative environmental scenarios: Translating storylines into biophysical modeling inputs at the watershed scale. Environmental Modelling and Software, 2016, 85, 80-97.	4. 5	44
11	Nonlinear groundwater influence on biophysical indicators of ecosystem services. Nature Sustainability, 2019, 2, 475-483.	23.7	42
12	Perenniality and diversity drive output stability and resilience in a 26-year cropping systems experiment. Field Crops Research, 2021, 263, 108071.	5.1	39
13	Shifting drivers and static baselines in environmental governance: challenges for improving and proving water quality outcomes. Regional Environmental Change, 2016, 16, 759-775.	2.9	35
14	Scenarios reveal pathways to sustain future ecosystem services in an agricultural landscape. Ecological Applications, 2018, 28, 119-134.	3.8	34
15	The synergistic effect of manure supply and extreme precipitation on surface water quality. Environmental Research Letters, 2018, 13, 044016.	5 . 2	32
16	Continuous separation of land use and climate effects on the past and future water balance. Journal of Hydrology, 2018, 565, 106-122.	5 . 4	30
17	Effects of evapotranspiration partitioning, plant water stress response and topsoil removal on the soil moisture regime of a floodplain wetland: implications for restoration. Hydrological Processes, 2010, 24, 2934-2946.	2.6	28
18	Hydroecological model predictions indicate wetter and more diverse soil water regimes and vegetation types following floodplain restoration. Journal of Geophysical Research, 2012, 117, .	3.3	27

#	Article	IF	CITATION
19	Is groundwater recharge always serving us well? Water supply provisioning, crop production, and flood attenuation in conflict in Wisconsin, USA. Ecosystem Services, 2016, 21, 153-165.	5.4	25
20	Comparing the effects of climate and land use on surface water quality using future watershed scenarios. Science of the Total Environment, 2019, 693, 133484.	8.0	20
21	Comparing surface effective saturation and depthâ€toâ€waterâ€level as predictors of plant composition in a restored riparian wetland. Ecohydrology, 2012, 5, 637-647.	2.4	18
22	Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landscape Ecology, 2020, 35, 2569-2586.	4.2	17
23	Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sensing, 2019, 11, 2460.	4.0	9
24	Impacts of groundwater extraction on calcareous fen floristic quality. Journal of Environmental Quality, 2020, 49, 723-734.	2.0	7
25	Dynamic ice formation in channels as a driver for streamâ€aquifer interactions. Geophysical Research Letters, 2013, 40, 3408-3412.	4.0	6
26	Agricultural Landscape Transformation Needed to Meet Water Quality Goals in the Yahara River Watershed of Southern Wisconsin. Ecosystems, 2022, 25, 507-525.	3.4	5
27	Management of minimum lake levels and impacts on flood mitigation: A case study of the Yahara Watershed, Wisconsin, USA. Journal of Hydrology, 2019, 577, 123920.	5.4	4
28	Data inaccessibility at subâ€county scale limits implementation of manuresheds. Journal of Environmental Quality, 2022, 51, 614-621.	2.0	4
29	A Qâ€method survey of stream restoration practitioners in the Driftless Area, <scp>USA</scp> . River Research and Applications, 2022, 38, 1090-1100.	1.7	3