Yingbin Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230023/publications.pdf

Version: 2024-02-01

18 papers	705 citations	759233 12 h-index	794594 19 g-index
			<i>3</i>
19 all docs	19 docs citations	19 times ranked	1433 citing authors

#	Article	IF	CITATIONS
1	Conditioned Medium from Hypoxic Bone Marrow-Derived Mesenchymal Stem Cells Enhances Wound Healing in Mice. PLoS ONE, 2014, 9, e96161.	2.5	187
2	Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately. Stem Cell Research and Therapy, 2015, 6, 120.	5. 5	118
3	Pre-vascularization Enhances Therapeutic Effects of Human Mesenchymal Stem Cell Sheets in Full Thickness Skin Wound Repair. Theranostics, 2017, 7, 117-131.	10.0	100
4	Granulocyte/Macrophage Colony-Stimulating Factor Influences Angiogenesis by Regulating the Coordinated Expression of VEGF and the Ang/Tie System. PLoS ONE, 2014, 9, e92691.	2.5	63
5	Prostaglandin E ₂ inhibits collagen synthesis in dermal fibroblasts and prevents hypertrophic scar formation <i>in vivo</i> . Experimental Dermatology, 2016, 25, 604-610.	2.9	36
6	Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway. Stem Cell Research and Therapy, 2017, 8, 114.	5.5	35
7	Epidermal HMGB1 Activates Dermal Fibroblasts and Causes Hypertrophic Scar Formation in Reduced Hydration. Journal of Investigative Dermatology, 2018, 138, 2322-2332.	0.7	27
8	microRNA-203 Modulates Wound Healing and Scar Formation via Suppressing Hes1 Expression in Epidermal Stem Cells. Cellular Physiology and Biochemistry, 2018, 49, 2333-2347.	1.6	26
9	Transient High Glucose Causes Persistent Vascular Dysfunction and Delayed Wound Healing by the DNMT1-Mediated Ang-1/NF-κB Pathway. Journal of Investigative Dermatology, 2021, 141, 1573-1584.	0.7	20
10	Angiopoietin-1 Protects the Endothelial Cells Against Advanced Glycation End Product Injury by Strengthening Cell Junctions and Inhibiting Cell Apoptosis. Journal of Cellular Physiology, 2015, 230, 1895-1905.	4.1	16
11	Involvement of miRNA203 in the proliferation of epidermal stem cells during the process of DM chronic wound healing through Wnt signal pathways. Stem Cell Research and Therapy, 2020, 11, 348.	5.5	13
12	Quantification of the differential expression levels of microRNA-203 in different degrees of diabetic foot. International Journal of Clinical and Experimental Pathology, 2015, 8, 13416-20.	0.5	13
13	Dendritic epidermal T cells facilitate wound healing in diabetic mice. American Journal of Translational Research (discontinued), 2016, 8, 2375-84.	0.0	13
14	Prevascularized mesenchymal stem cell-sheets increase survival of random skin flaps in a nude mouse model. American Journal of Translational Research (discontinued), 2019, 11, 1403-1416.	0.0	13
15	Defects in dermal $V\hat{i}^34\hat{i}^3\hat{i}^*T$ cells result in delayed wound healing in diabetic mice. American Journal of Translational Research (discontinued), 2016, 8, 2667-80.	0.0	9
16	Granulocyte/macrophage colony-stimulating factor attenuates endothelial hyperpermeability after thermal injury. American Journal of Translational Research (discontinued), 2015, 7, 474-88.	0.0	7
17	Vacuum-Assisted Closure and Skin Grafting Combined with Amphotericin B for Successful Treatment of an Immunocompromised Patient with Cutaneous Mucormycosis Caused by Mucor irregularis: A Case Report and Literature Review. Mycopathologia, 2021, 186, 449-459.	3.1	6
18	Reduced hydration-induced decreased caveolin-1 expression causes epithelial-to-mesenchymal transition. American Journal of Translational Research (discontinued), 2020, 12, 8067-8083.	0.0	1