Fabrizia Cesca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229838/publications.pdf

Version: 2024-02-01

304368 233125 2,590 46 22 45 h-index citations g-index papers 50 50 50 4575 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discovery, 2022, 8, 58.	2.0	1
2	Stability Studies of New Caged bis â€deoxyâ€coelenterazine Derivatives and Their Potential Use as Cellular pH Probes. Photochemistry and Photobiology, 2021, 97, 343-352.	1.3	O
3	Neuroinflammation induces synaptic scaling through IL- $\hat{\Pi}^2$ -mediated activation of the transcriptional repressor REST/NRSF. Cell Death and Disease, 2021, 12, 180.	2.7	21
4	The enhancement of activity rescues the establishment of <i>Mecp2</i> null neuronal phenotypes. EMBO Molecular Medicine, 2021, 13, e12433.	3.3	8
5	Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Molecular Psychiatry, 2021, 26, 6411-6426.	4.1	13
6	A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. Journal of Cell Science, 2021, 134, .	1,2	10
7	Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Frontiers in Neuroscience, 2021, 15, 731198.	1.4	8
8	Kidins220/ARMS controls astrocyte calcium signaling and neuron–astrocyte communication. Cell Death and Differentiation, 2020, 27, 1505-1519.	5.0	15
9	Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study. ACS Synthetic Biology, 2020, 9, 2039-2054.	1.9	4
10	Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death and Disease, 2019, 10, 864.	2.7	24
11	Neuronal Cultures and Nanomaterials. Advances in Neurobiology, 2019, 22, 51-79.	1.3	7
12	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	5.2	37
13	Mild Inactivation of RE-1 Silencing Transcription Factor (REST) Reduces Susceptibility to Kainic Acid-Induced Seizures. Frontiers in Cellular Neuroscience, 2019, 13, 580.	1.8	10
14	Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Molecular Neurobiology, 2018, 55, 8788-8798.	1.9	27
15	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7. 3	438
16	Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience, 2018, 12, 12.	1.2	98
17	Kidins220/ <scp>ARMS</scp> transgenic lines could be instrumental in the understanding of the molecular mechanisms leading to spastic paraplegia and obesity. European Journal of Neurology, 2018, 25, e107.	1.7	2
18	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	4.5	47

#	Article	IF	Citations
19	Interactions Between 2D Graphene-Based Materials and the Nervous tissue. , 2018, , 62-85.		2
20	Imaging and structural studies of DNA–protein complexes and membrane ion channels. Nanoscale, 2017, 9, 2768-2777.	2.8	9
21	Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses. Journal of Cell Science, 2017, 130, 1435-1449.	1.2	18
22	Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. Journal of Experimental Neuroscience, 2017, 11, 117906951770335.	2.3	21
23	APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development. Cell Reports, 2017, 21, 3596-3611.	2.9	14
24	Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. Frontiers in Cellular Neuroscience, 2016, 10, 68.	1.8	24
25	Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca ²⁺ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano, 2016, 10, 7154-7171.	7.3	124
26	ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation. Molecular and Cellular Biology, 2016, 36, 2208-2225.	1.1	43
27	Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E91-100.	3.3	48
28	Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e169.	3.1	19
29	Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+Channels. Journal of Biological Chemistry, 2015, 290, 18045-18055.	1.6	13
30	Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. Journal of Experimental Medicine, 2015, 212, 1693-1708.	4.2	18
31	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
32	Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Advances, 2014, 4, 45696-45702.	1.7	31
33	Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks. Small, 2013, 9, 402-412.	5. 2	83
34	Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nature Communications, 2013, 4, 1512.	5.8	87
35	Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Human Molecular Genetics, 2013, 22, 2186-2199.	1.4	61
36	Synaptic and Extrasynaptic Origin of the Excitation/Inhibition Imbalance in the Hippocampus of Synapsin I/II/III Knockout Mice. Cerebral Cortex, 2013, 23, 581-593.	1.6	65

#	Article	IF	CITATIONS
37	Specificity Protein 1 (Sp1)-dependent Activation of the Synapsin I Gene (SYN1) Is Modulated by RE1-silencing Transcription Factor (REST) and $5\hat{a}\in^2$ -Cytosine-Phosphoguanine (CpG) Methylation. Journal of Biological Chemistry, 2013, 288, 3227-3239.	1.6	53
38	3D Cell Cultures: Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks (Small 3/2013). Small, 2013, 9, 334-334.	5.2	2
39	Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death and Differentiation, 2012, 19, 194-208.	5.0	62
40	Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. Journal of Cell Science, 2012, 125, 1845-54.	1.2	55
41	Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons. PLoS ONE, 2012, 7, e35785.	1.1	14
42	Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death and Disease, 2011, 2, e226-e226.	2.7	50
43	Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes. Journal of Neuroscience, 2011, 31, 7275-7290.	1.7	244
44	The synapsins: Key actors of synapse function and plasticity. Progress in Neurobiology, 2010, 91, 313-348.	2.8	510
45	Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience, 2010, 171, 268-283.	1.1	57
46	Kidins220/ARMS Is Transported by a Kinesin-1–based Mechanism Likely to be Involved in Neuronal Differentiation. Molecular Biology of the Cell, 2007, 18, 142-152.	0.9	51