
Fabrizia Cesca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229838/publications.pdf Version: 2024-02-01

FARDIZIA CESCA

#	Article	IF	CITATIONS
1	The synapsins: Key actors of synapse function and plasticity. Progress in Neurobiology, 2010, 91, 313-348.	2.8	510
2	Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano, 2018, 12, 10582-10620.	7.3	438
3	Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes. Journal of Neuroscience, 2011, 31, 7275-7290.	1.7	244
4	Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca ²⁺ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano, 2016, 10, 7154-7171.	7.3	124
5	Interfacing Graphene-Based Materials With Neural Cells. Frontiers in Systems Neuroscience, 2018, 12, 12.	1.2	98
6	Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels. Nature Communications, 2013, 4, 1512.	5.8	87
7	Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks. Small, 2013, 9, 402-412.	5.2	83
8	Synaptic and Extrasynaptic Origin of the Excitation/Inhibition Imbalance in the Hippocampus of Synapsin I/II/III Knockout Mice. Cerebral Cortex, 2013, 23, 581-593.	1.6	65
9	Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems. Cell Death and Differentiation, 2012, 19, 194-208.	5.0	62
10	Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Human Molecular Genetics, 2013, 22, 2186-2199.	1.4	61
11	Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam. Neuroscience, 2010, 171, 268-283.	1.1	57
12	Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways. Journal of Cell Science, 2012, 125, 1845-54.	1.2	55
13	Specificity Protein 1 (Sp1)-dependent Activation of the Synapsin I Gene (SYN1) Is Modulated by RE1-silencing Transcription Factor (REST) and 5′-Cytosine-Phosphoguanine (CpG) Methylation. Journal of Biological Chemistry, 2013, 288, 3227-3239.	1.6	53
14	Kidins220/ARMS Is Transported by a Kinesin-1–based Mechanism Likely to be Involved in Neuronal Differentiation. Molecular Biology of the Cell, 2007, 18, 142-152.	0.9	51
15	Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development. Cell Death and Disease, 2011, 2, e226-e226.	2.7	50
16	Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E91-100.	3.3	48
17	Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Letters, 2018, 18, 5827-5838.	4.5	47
18	ZDHHC3 Tyrosine Phosphorylation Regulates Neural Cell Adhesion Molecule Palmitoylation. Molecular and Cellular Biology, 2016, 36, 2208-2225.	1.1	43

FABRIZIA CESCA

#	Article	IF	CITATIONS
19	Bio-inspired hybrid microelectrodes: a hybrid solution to improve long-term performance of chronic intracortical implants. Frontiers in Neuroengineering, 2014, 7, 7.	4.8	39
20	An Increase in Membrane Cholesterol by Graphene Oxide Disrupts Calcium Homeostasis in Primary Astrocytes. Small, 2019, 15, e1900147.	5.2	37
21	Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Advances, 2014, 4, 45696-45702.	1.7	31
22	Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Molecular Neurobiology, 2018, 55, 8788-8798.	1.9	27
23	Stepping Out of the Shade: Control of Neuronal Activity by the Scaffold Protein Kidins220/ARMS. Frontiers in Cellular Neuroscience, 2016, 10, 68.	1.8	24
24	Autoantibodies to synapsin I sequestrate synapsin I and alter synaptic function. Cell Death and Disease, 2019, 10, 864.	2.7	24
25	Optogenetic Modulation of Intracellular Signalling and Transcription: Focus on Neuronal Plasticity. Journal of Experimental Neuroscience, 2017, 11, 117906951770335.	2.3	21
26	Neuroinflammation induces synaptic scaling through IL-1β-mediated activation of the transcriptional repressor REST/NRSF. Cell Death and Disease, 2021, 12, 180.	2.7	21
27	Intrathecal immunoglobulin A and G antibodies to synapsin in a patient with limbic encephalitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e169.	3.1	19
28	Kidins220/ARMS binds to the B cell antigen receptor and regulates B cell development and activation. Journal of Experimental Medicine, 2015, 212, 1693-1708.	4.2	18
29	Neuronal hyperactivity causes Na+/H+ exchanger-induced extracellular acidification at active synapses. Journal of Cell Science, 2017, 130, 1435-1449.	1.2	18
30	Kidins220/ARMS controls astrocyte calcium signaling and neuron–astrocyte communication. Cell Death and Differentiation, 2020, 27, 1505-1519.	5.0	15
31	Kidins220/ARMS Is a Novel Modulator of Short-Term Synaptic Plasticity in Hippocampal GABAergic Neurons. PLoS ONE, 2012, 7, e35785.	1.1	14
32	APache Is an AP2-Interacting Protein Involved in Synaptic Vesicle Trafficking and Neuronal Development. Cell Reports, 2017, 21, 3596-3611.	2.9	14
33	Functional Interaction between the Scaffold Protein Kidins220/ARMS and Neuronal Voltage-Gated Na+ Channels. Journal of Biological Chemistry, 2015, 290, 18045-18055.	1.6	13
34	Kidins220 deficiency causes ventriculomegaly via SNX27-retromer-dependent AQP4 degradation. Molecular Psychiatry, 2021, 26, 6411-6426.	4.1	13
35	Mild Inactivation of RE-1 Silencing Transcription Factor (REST) Reduces Susceptibility to Kainic Acid-Induced Seizures. Frontiers in Cellular Neuroscience, 2019, 13, 580.	1.8	10
36	A developmental stage- and Kidins220-dependent switch in astrocyte responsiveness to brain-derived neurotrophic factor. Journal of Cell Science, 2021, 134, .	1.2	10

FABRIZIA CESCA

#	Article	IF	CITATIONS
37	Imaging and structural studies of DNA–protein complexes and membrane ion channels. Nanoscale, 2017, 9, 2768-2777.	2.8	9
38	The enhancement of activity rescues the establishment of <i>Mecp2</i> null neuronal phenotypes. EMBO Molecular Medicine, 2021, 13, e12433.	3.3	8
39	Graphene Nanoplatelets Render Poly(3-Hydroxybutyrate) a Suitable Scaffold to Promote Neuronal Network Development. Frontiers in Neuroscience, 2021, 15, 731198.	1.4	8
40	Neuronal Cultures and Nanomaterials. Advances in Neurobiology, 2019, 22, 51-79.	1.3	7
41	Engineering REST-Specific Synthetic PUF Proteins to Control Neuronal Gene Expression: A Combined Experimental and Computational Study. ACS Synthetic Biology, 2020, 9, 2039-2054.	1.9	4
42	3D Cell Cultures: Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks (Small 3/2013). Small, 2013, 9, 334-334.	5.2	2
43	Kidins220/ <scp>ARMS</scp> transgenic lines could be instrumental in the understanding of the molecular mechanisms leading to spastic paraplegia and obesity. European Journal of Neurology, 2018, 25, e107.	1.7	2
44	Interactions Between 2D Graphene-Based Materials and the Nervous tissue. , 2018, , 62-85.		2
45	Kidins220/ARMS modulates brain morphology and anxiety-like traits in adult mice. Cell Death Discovery, 2022, 8, 58.	2.0	1
46	Stability Studies of New Caged bis â€deoxyâ€coelenterazine Derivatives and Their Potential Use as Cellular pH Probes. Photochemistry and Photobiology, 2021, 97, 343-352.	1.3	0