List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229531/publications.pdf Version: 2024-02-01

		53660	23472
122	12,949	45	111
papers	citations	h-index	g-index
129	129	129	18152
all docs	docs citations	times ranked	citing authors

ANCEL RAVA

#	Article	IF	CITATIONS
1	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	9.4	1,275
2	Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 2010, 464, 606-609.	13.7	1,187
3	Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 2009, 460, 1140-1144.	13.7	1,030
4	Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes and Development, 2004, 18, 99-115.	2.7	820
5	Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature, 2009, 460, 53-59.	13.7	660
6	Interplay of LRRK2 with chaperone-mediated autophagy. Nature Neuroscience, 2013, 16, 394-406.	7.1	515
7	Diseaseâ€specific phenotypes in dopamine neurons from human iPSâ€based models of genetic and sporadic Parkinson's disease. EMBO Molecular Medicine, 2012, 4, 380-395.	3.3	501
8	Generation of Induced Pluripotent Stem Cells from Human Cord Blood Using OCT4 and SOX2. Cell Stem Cell, 2009, 5, 353-357.	5.2	392
9	Lipoic Acid Improves Nerve Blood Flow, Reduces Oxidative Stress, and Improves Distal Nerve Conduction in Experimental Diabetic Neuropathy. Diabetes Care, 1995, 18, 1160-1167.	4.3	372
10	Epicardial retinoid X receptor is required for myocardial growth and coronary artery formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18455-18460.	3.3	320
11	Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11889-11895.	3.3	302
12	Retinoic acid signalling links left–right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature, 2005, 435, 165-171.	13.7	256
13	Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature, 2004, 427, 121-128.	13.7	255
14	Patient-Specific iPSC-Derived Astrocytes Contribute to Non-Cell-Autonomous Neurodegeneration in Parkinson's Disease. Stem Cell Reports, 2019, 12, 213-229.	2.3	250
15	MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nature Cell Biology, 2003, 5, 513-519.	4.6	247
16	Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10294-10299.	3.3	226
17	Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nature Communications, 2016, 7, 11124.	5.8	223
18	CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell, 2017, 21, 431-447.	5.2	215

#	Article	IF	CITATIONS
19	Left–right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics, 2006, 7, 283-293.	7.7	200
20	Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes and Development, 2003, 17, 1213-1218.	2.7	171
21	Enhancing glycolysis attenuates Parkinson's disease progression in models and clinical databases. Journal of Clinical Investigation, 2019, 129, 4539-4549.	3.9	159
22	Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafish development. Genes and Development, 2005, 19, 164-175.	2.7	146
23	Identification of p53 regulators by genome-wide functional analysis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3456-3461.	3.3	139
24	Embryonic stem cell-like cells derived from adult human testis. Human Reproduction, 2010, 25, 158-167.	0.4	131
25	The local microenvironment limits the regenerative potential of the mouse neonatal heart. Science Advances, 2018, 4, eaao5553.	4.7	124
26	Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nature Genetics, 2006, 38, 1316-1322.	9.4	117
27	Aberrant epigenome in <scp>iPSC</scp> â€derived dopaminergic neurons from Parkinson's disease patients. EMBO Molecular Medicine, 2015, 7, 1529-1546.	3.3	117
28	Efficient Generation of A9 Midbrain Dopaminergic Neurons by Lentiviral Delivery of LMX1A in Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Human Gene Therapy, 2012, 23, 56-69.	1.4	111
29	Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 2010, 49, 771-780.	0.9	104
30	Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Human Reproduction Update, 2016, 22, 411-419.	5.2	93
31	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells under Xeno-free Conditions Â. Stem Cells, 2010, 28, 36-44.	1.4	92
32	Tbx2 and Tbx3 Regulate the Dynamics of Cell Proliferation during Heart Remodeling. PLoS ONE, 2007, 2, e398.	1.1	82
33	Characterization of a Novel Type of Serine/Threonine Kinase That Specifically Phosphorylates the Human Goodpasture Antigen. Journal of Biological Chemistry, 1999, 274, 12642-12649.	1.6	77
34	Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1. Genes and Development, 2010, 24, 561-573.	2.7	76
35	Goodpasture Antigen-binding Protein, the Kinase That Phosphorylates the Goodpasture Antigen, Is an Alternatively Spliced Variant Implicated in Autoimmune Pathogenesis. Journal of Biological Chemistry, 2000, 275, 40392-40399.	1.6	69
36	Brief Report: Efficient Generation of Hematopoietic Precursors and Progenitors from Human Pluripotent Stem Cell Lines. Stem Cells, 2011, 29, 1158-1164.	1.4	69

#	Article	IF	CITATIONS
37	The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development (Cambridge), 2002, 129, 5161-70.	1.2	60
38	Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nature Clinical Practice Cardiovascular Medicine, 2006, 3, S114-S122.	3.3	58
39	MicroRNA alterations in iPSC-derived dopaminergic neurons from Parkinson disease patients. Neurobiology of Aging, 2018, 69, 283-291.	1.5	55
40	Transcriptomics approach to investigate zebrafish heart regeneration. Journal of Cardiovascular Medicine, 2010, 11, 369-380.	0.6	54
41	Interferon decreases serum lipid peroxidation products of hepatitis C patients. Free Radical Biology and Medicine, 1994, 16, 131-133.	1.3	53
42	A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nature Protocols, 2010, 5, 647-660.	5.5	52
43	Proteomics Analysis of Extracellular Matrix Remodeling During Zebrafish Heart Regeneration. Molecular and Cellular Proteomics, 2019, 18, 1745-1755.	2.5	51
44	Human iPSC modelling of a familial form of atrial fibrillation reveals a gain of function of If and ICaL in patient-derived cardiomyocytes. Cardiovascular Research, 2020, 116, 1147-1160.	1.8	50
45	Defining the Minimal Factors Required for Erythropoiesis through Direct Lineage Conversion. Cell Reports, 2016, 15, 2550-2562.	2.9	48
46	Using iPS Cells toward the Understanding of Parkinson's Disease. Journal of Clinical Medicine, 2015, 4, 548-566.	1.0	47
47	Eph-ephrin signaling modulated by polymerization and condensation of receptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13188-13193.	3.3	47
48	Engineered Macroscale Cardiac Constructs Elicit Human Myocardial Tissue-like Functionality. Stem Cell Reports, 2019, 13, 207-220.	2.3	47
49	Generation of Cardiomyocytes from New Human Embryonic Stem Cell Lines Derived from Poor-quality Blastocysts. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 127-135.	2.0	46
50	Patient-Specific iPSC-Derived Endothelial Cells Provide Long-Term Phenotypic Correction of Hemophilia A. Stem Cell Reports, 2018, 11, 1391-1406.	2.3	46
51	The Zebrafish as a Model of Heart Regeneration. Cloning and Stem Cells, 2004, 6, 345-351.	2.6	45
52	miles-apart-Mediated regulation of cell–fibronectin interaction and myocardial migration in zebrafish. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, S77-S82.	3.3	45
53	Decreased glutathione peroxidase activity in sciatic nerve of alloxan-induced diabetic mice and its correlation with blood glucose levels. Neurochemical Research, 1993, 18, 893-896.	1.6	44
54	Sequential transfer of left–right information during vertebrate embryo development. Current Opinion in Genetics and Development, 2004, 14, 575-581.	1.5	43

#	Article	IF	CITATIONS
55	Neoinnervation and neovascularization of acellular pericardial-derived scaffolds in myocardial infarcts. Stem Cell Research and Therapy, 2015, 6, 108.	2.4	41
56	The Small GTPase RAC1/CED-10 Is Essential in Maintaining Dopaminergic Neuron Function and Survival Against α-Synuclein-Induced Toxicity. Molecular Neurobiology, 2018, 55, 7533-7552.	1.9	40
57	Traction forces at the cytokinetic ring regulate cell division and polyploidy in the migrating zebrafish epicardium. Nature Materials, 2019, 18, 1015-1023.	13.3	40
58	Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nature Protocols, 2019, 14, 616-638.	5.5	36
59	Unveiling the establishment of left–right asymmetry in the chick embryo. Mechanisms of Development, 2004, 121, 1043-1054.	1.7	35
60	Glutathiione system of human retina: Enzymatic conjugation of lipid peroxidation products. Free Radical Biology and Medicine, 1993, 14, 549-551.	1.3	31
61	Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks. Stem Cell Reports, 2015, 5, 546-557.	2.3	31
62	Direct Conversion of Fibroblasts to Megakaryocyte Progenitors. Cell Reports, 2016, 17, 671-683.	2.9	31
63	4-Hydroxynonenal, a Lipid Peroxidation Product, Induces Relaxation of Human Cerebral Arteries. Journal of Cerebral Blood Flow and Metabolism, 1994, 14, 693-696.	2.4	28
64	Reprogramming Captures the Genetic and Tumorigenic Properties of Neurofibromatosis Type 1 Plexiform Neurofibromas. Stem Cell Reports, 2019, 12, 411-426.	2.3	28
65	Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16010.	1.8	27
66	iPS Cell Cultures from a Gerstmann-Strässler-Scheinker Patient with the Y218N PRNP Mutation Recapitulate tau Pathology. Molecular Neurobiology, 2018, 55, 3033-3048.	1.9	27
67	GATA2 Promotes Hematopoietic Development and Represses Cardiac Differentiation of Human Mesoderm. Stem Cell Reports, 2019, 13, 515-529.	2.3	27
68	Ablation of Dido3 compromises lineage commitment of stem cells in vitro and during early embryonic development. Cell Death and Differentiation, 2012, 19, 132-143.	5.0	23
69	CRISPR/Cas9-mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminergic neurons. Scientific Reports, 2019, 9, 6811.	1.6	22
70	Long-Term Engraftment of Human Cardiomyocytes Combined with Biodegradable Microparticles Induces Heart Repair. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 761-771.	1.3	22
71	Cell therapy with hiPSC-derived RPE cells and RPCs prevents visual function loss in a rat model of retinal degeneration. Molecular Therapy - Methods and Clinical Development, 2021, 20, 688-702.	1.8	22
72	Cyclin A ₁ Is Essential for Setting the Pluripotent State and Reducing Tumorigenicity of Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 2891-2899.	1.1	19

#	Article	IF	CITATIONS
73	Modeling iPSC-derived human neurofibroma-like tumors in mice uncovers the heterogeneity of Schwann cells within plexiform neurofibromas. Cell Reports, 2022, 38, 110385.	2.9	19
74	Prostaglandin EP2 Receptors Mediate Mesenchymal Stromal Cell-Neuroprotective Effects on Dopaminergic Neurons. Molecular Neurobiology, 2018, 55, 4763-4776.	1.9	18
75	Insights into the establishment of left–right asymmetries in vertebrates. Birth Defects Research Part C: Embryo Today Reviews, 2008, 84, 81-94.	3.6	16
76	Modeling the genetic complexity of Parkinson's disease by targeted genome edition in iPS cells. Current Opinion in Genetics and Development, 2017, 46, 123-131.	1.5	16
77	Whole-genome DNA hyper-methylation in iPSC-derived dopaminergic neurons from Parkinson's disease patients. Clinical Epigenetics, 2019, 11, 108.	1.8	16
78	Generation of iPSCs from Genetically Corrected <i>Brca2</i> Hypomorphic Cells: Implications in Cell Reprogramming and Stem Cell Therapy. Stem Cells, 2014, 32, 436-446.	1.4	15
79	Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells. Stem Cell Research and Therapy, 2021, 12, 233.	2.4	15
80	Modulation of the endocrine transcriptional program by targeting histone modifiers of the H3K27me3 mark. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 473-480.	0.9	14
81	Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease. BioMed Research International, 2015, 2015, 1-15.	0.9	13
82	Generation of integration-free induced pluripotent stem cell lines derived from two patients with X-linked Alport syndrome (XLAS). Stem Cell Research, 2017, 25, 291-295.	0.3	13
83	Engineering and Assessing Cardiac Tissue Complexity. International Journal of Molecular Sciences, 2021, 22, 1479.	1.8	13
84	Turning Human Epidermis Into Pancreatic Endoderm. Review of Diabetic Studies, 2010, 7, 158-167.	0.5	13
85	Molecular characterization of ten F8 splicing mutations in RNA isolated from patient's leucocytes: assessment of in silico prediction tools accuracy. Haemophilia, 2015, 21, 249-257.	1.0	12
86	Cationic Carbosilane Dendrimers Prevent Abnormal α-Synuclein Accumulation in Parkinson's Disease Patient-Specific Dopamine Neurons. Biomacromolecules, 2021, 22, 4582-4591.	2.6	12
87	Long-term in vivo single-cell lineage tracing of deep structures using three-photon activation. Light: Science and Applications, 2016, 5, e16084-e16084.	7.7	11
88	Parkinson's disease patient-specific neuronal networks carrying the LRRK2 G2019S mutation unveil early functional alterations that predate neurodegeneration. Npj Parkinson's Disease, 2021, 7, 55.	2.5	11
89	Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines. Stem Cell Research, 2017, 24, 155-159.	0.3	10
90	Preclinical Safety Evaluation of Allogeneic Induced Pluripotent Stem Cell-Based Therapy in a Swine Model of Myocardial Infarction. Tissue Engineering - Part C: Methods, 2017, 23, 736-744.	1.1	10

#	Article	IF	CITATIONS
91	Inborn errors of metabolism: Lessons from iPSC models. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 1189-1200.	2.6	10
92	Transplantation of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in a Swine Model of Geographic Atrophy. International Journal of Molecular Sciences, 2021, 22, 10497.	1.8	10
93	Molecular markers of putative spermatogonial stem cells in the domestic cat. Reproduction in Domestic Animals, 2017, 52, 177-186.	0.6	9
94	Long-Term Labeling of Hippocampal Neural Stem Cells by a Lentiviral Vector. Frontiers in Molecular Neuroscience, 2018, 11, 415.	1.4	9
95	Prevention of the acute neurotoxic effects of phenytoin on rat peripheral nerve by H7, an inhibitor of protein kinase C. Toxicology, 1992, 75, 249-256.	2.0	8
96	Phenytoin-induced glutathione depletion in rat peripheral nerve. Free Radical Biology and Medicine, 1995, 19, 665-667.	1.3	8
97	Integration-free induced pluripotent stem cells derived from a patient with autosomal recessive Alport syndrome (ARAS). Stem Cell Research, 2017, 25, 1-5.	0.3	8
98	Patient-specific iPSC-derived cellular models of LGMDR1. Stem Cell Research, 2021, 53, 102333.	0.3	8
99	Atypical cyclin P regulates cancer cell stemness through activation of the WNT pathway. Cellular Oncology (Dordrecht), 2021, 44, 1273-1286.	2.1	8
100	Temperature dependence of the toxic effects of phenytoin on peripheral neuromuscular function of the rat tail. Neurotoxicology and Teratology, 1990, 12, 627-631.	1.2	7
101	Derivation of human embryonic stem cells at the Center of Regenerative Medicine in Barcelona. In Vitro Cellular and Developmental Biology - Animal, 2010, 46, 356-366.	0.7	7
102	Fate predetermination of cardiac myocytes during zebrafish heart regeneration. Open Biology, 2017, 7, 170116.	1.5	7
103	Altered regulation of <i>BRCA1</i> exon 11 splicing is associated with breast cancer risk in carriers of <i>BRCA1</i> pathogenic variants. Human Mutation, 2021, 42, 1488-1502.	1.1	7
104	Nerve conduction velocity decrease and synaptic transmission alterations in caffeine-treated rats. Neurotoxicology and Teratology, 1994, 16, 11-15.	1.2	6
105	Advanced cellâ€based modeling of the royal disease: characterization of the mutated F9mRNA. Journal of Thrombosis and Haemostasis, 2017, 15, 2188-2197.	1.9	6
106	Stem Cell Research in Spain: If Only They Were Windmills …. Cell Stem Cell, 2009, 4, 483-486.	5.2	5
107	Trabeculated Myocardium in Hypertrophic Cardiomyopathy: Clinical Consequences. Journal of Clinical Medicine, 2020, 9, 3171.	1.0	5
108	Induced Pluripotent Stem Cell-Based Studies of Parkinson's Disease: Challenges and Promises. CNS and Neurological Disorders - Drug Targets, 2013, 999, 29-30.	0.8	5

ANGEL RAYA

#	Article	IF	CITATIONS
109	Expression of the T85A mutant of zebrafish aquaporin 3b improves post-thaw survival of cryopreserved early mammalian embryos. Zygote, 2016, 24, 839-847.	0.5	4
110	Consensus Statement of European Societies of Gene and Cell Therapy on the Reported Birth of Genome-Edited Babies in China. Human Gene Therapy, 2018, 29, 1337-1338.	1.4	3
111	Induced Pluripotency and Gene Editing in Fanconi Anemia. Current Gene Therapy, 2017, 16, 321-328.	0.9	3
112	Stem cells therapy for regenerative medicine: Principles of present and future practice. Journal of Biomedical Science and Engineering, 2014, 07, 49-57.	0.2	2
113	Diversifying stem cell debates: Including Muslim contexts and perspectives. Stem Cell Reports, 2022, , .	2.3	2
114	Alterations in the antioxidant defense of peripheral nervous tissue following acute ethanol administration. Biochemical Society Transactions, 1993, 21, 92S-92S.	1.6	1
115	EBCOG position statement: ethics of stem cell research. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2020, 247, 244-245.	0.5	1
116	Porcine iPSC Generation: Testing Different Protocols to a Successful Application. Methods in Molecular Biology, 2021, , 1.	0.4	1
117	Induction of ectopic limb outgrowth in chick with FGF-8. , 2005, , 99-105.		0
118	179. Correcting the Bleeding Phenotype in Hemophilia Ausing Lentivirally FVIII-Corrected Endothelial Cells Differentiated from Hemophilic Induced Pluripotent Stem Cell (iPSC). Molecular Therapy, 2015, 23, S71-S72.	3.7	0
119	Defining the minimal factors required for erythropoiesis through direct lineage conversion. Experimental Hematology, 2016, 44, S52-S53.	0.2	0
120	Pluripotent Stem Cell Banks. , 2018, , 337-367.		0
121	Maintenance of Embryonic Stem Cell Pluripotency by Nanog-Mediated Dedifferentiation of Committed Mesoderm Progenitors. , 2009, , 37-53.		0
122	Cardiac Laterality and Congenital Heart Disease. , 1999, , 238-248.		0