List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229229/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pd-catalyzed cross-electrophile Coupling/C–H alkylation reaction enabled by a mediator generated via C(sp3)–H activation. Chemical Science, 2021, 12, 8531-8536.	7.4	10
2	Intermolecular C–H silylation through cascade carbopalladation and vinylic to aryl 1,4-palladium migration. Chemical Communications, 2021, 57, 9700-9703.	4.1	13
3	Diastereoselective Construction of Eight-Membered Carbocycles through Palladium-Catalyzed C(sp ³)–H Functionalization. Organic Letters, 2021, 23, 1269-1274.	4.6	9
4	Palladium-Catalyzed Dual Coupling Reaction of 2-lodobiphenyls with <i>o</i> -Bromoanilines through C–H Activation: An Approach for the Synthesis of Tribenzo[<i>b</i> , <i>d</i> , <i>f</i>]azepines. Organic Letters, 2021, 23, 1239-1242.	4.6	30
5	Pd-Catalyzed <i>ipso</i> , <i>meta</i> -Dimethylation of <i>ortho</i> -Substituted Iodoarenes via a Base-Controlled C–H Activation Cascade with Dimethyl Carbonate as the Methyl Source. Journal of the American Chemical Society, 2021, 143, 4524-4530.	13.7	24
6	Palladium-Catalyzed <i>anti</i> -Carbosilylation of Alkynes to Access Isoquinolinone-Containing Exocyclic Vinylsilanes. Organic Letters, 2021, 23, 5772-5776.	4.6	16
7	Palladium-Catalyzed Intramolecular Cross-Coupling of Unactivated C(sp ³)–H and C(sp ²)–H Bonds. Organic Letters, 2021, 23, 7161-7165.	4.6	7
8	Synthesis of 9-Fluorenylidenes via Pd-Catalyzed C–H Vinylation with Vinyl Bromides. Organic Letters, 2021, 23, 7746-7750.	4.6	11
9	Palladium-catalyzed diastereoselective cross-coupling of two aryl halides <i>via</i> C–H activation: synthesis of chiral eight-membered nitrogen heterocycles. Chemical Communications, 2021, 57, 2939-2942.	4.1	23
10	Synthesis of Spiroindenyl-2-Oxindoles through Palladium-Catalyzed Spirocyclization of 2-Bromoarylamides and Vinyl Bromides. Molecules, 2021, 26, 7496.	3.8	1
11	C(sp ³)–H activation-enabled cross-coupling of two aryl halides: an approach to 9,10-dihydrophenanthrenes. Chemical Communications, 2020, 56, 10942-10945.	4.1	23
12	Synthesis of 3,4-Fused Tricyclic Indoles through Cascade Carbopalladation and C–H Amination: Development and Total Synthesis of Rucaparib. Organic Letters, 2020, 22, 4985-4989.	4.6	47
13	Palladium-catalyzed intermolecular C–H silylation initiated by aminopalladation. Chemical Communications, 2020, 56, 7801-7804.	4.1	11
14	Palladiumâ€Catalyzed Threeâ€Component Reactions for the Synthesis of Norbornaneâ€Fused Indanes. Advanced Synthesis and Catalysis, 2020, 362, 1496-1501.	4.3	14
15	Synthesis of Indolines by Palladium-Catalyzed Intermolecular Amination of Unactivated C(sp ³)–H Bonds. Organic Letters, 2019, 21, 6508-6512.	4.6	28
16	Enantioselective synthesis of quaternary 3,4-dihydroisoquinolinones <i>via</i> Heck carbonylation reactions: development and application to the synthesis of Minalrestat analogues. Chemical Science, 2019, 10, 9853-9858.	7.4	49
17	Pd-Catalyzed C–H Silylation Reactions with Disilanes. Synlett, 2019, 30, 685-693.	1.8	22
18	Synthesis of Benzimidazoles through Palladiumâ€Catalyzed Amination of 2â€lodobenzimines with Diaziridinone, Advanced Synthesis and Catalysis, 2019, 361, 739-746	4.3	18

#	Article	IF	CITATIONS
19	Palladiumâ€Catalyzed Câ°'H Silylation through Palladacycles Generated from Aryl Halides. Angewandte Chemie - International Edition, 2018, 57, 3233-3237.	13.8	119
20	Palladium atalyzed Câ^'H Silylation through Palladacycles Generated from Aryl Halides. Angewandte Chemie, 2018, 130, 3287-3291.	2.0	25
21	Synthesis of 9,9-Disubstituted Fluorenes from 2-lodobiphenyls and α-Diazoesters under Palladium Catalysis. Journal of Organic Chemistry, 2018, 83, 1065-1072.	3.2	37
22	Disilylation of Palladacycles that were Generated through the Câ^'H Activation of Aryl Halides. Asian Journal of Organic Chemistry, 2018, 7, 1403-1410.	2.7	25
23	Pd(II)-Catalyzed Catellani-Type Domino Reaction Utilizing Arylboronic Acids as Substrates. ACS Catalysis, 2018, 8, 3775-3779.	11.2	56
24	Synthesis of Carbazoles from 2â€lodobiphenyls by Palladium atalyzed Câ^'H Activation and Amination with Diaziridinone. Advanced Synthesis and Catalysis, 2018, 360, 887-892.	4.3	41
25	The Synthesis of Benzofulvenes through Palladium atalyzed Sequential Three omponent Reactions. Advanced Synthesis and Catalysis, 2018, 360, 4480-4484.	4.3	17
26	Synthesis of Indoles through Palladium-Catalyzed Three-Component Reaction of Aryl Iodides, Alkynes, and Diaziridinone. Organic Letters, 2018, 20, 6440-6443.	4.6	39
27	Palladium-catalyzed sequential three-component reactions to access vinylsilanes. Chemical Communications, 2018, 54, 10598-10601.	4.1	31
28	Oxalic acid as the in situ carbon monoxide generator in palladium-catalyzed hydroxycarbonylation of arylhalides. Organic and Biomolecular Chemistry, 2017, 15, 5033-5040.	2.8	32
29	Palladium-catalyzed C–H alkylation of 2-phenylpyridines with alkyl iodides. Organic and Biomolecular Chemistry, 2017, 15, 5616-5624.	2.8	19
30	An approach to spirooxindoles via palladium-catalyzed remote C–H activation and dual alkylation with CH ₂ Br ₂ . Chemical Communications, 2017, 53, 10429-10432.	4.1	69
31	Palladiumâ€Catalyzed Alkylation with Alkyl Halides by C(sp ³)â^'H Activation. Angewandte Chemie, 2017, 129, 12456-12459.	2.0	17
32	Palladium atalyzed Alkylation with Alkyl Halides by C(sp ³)â^'H Activation. Angewandte Chemie - International Edition, 2017, 56, 12288-12291.	13.8	65
33	Synthesis of 2-substituted tetraphenylenes via transition-metal-catalyzed derivatization of tetraphenylene. Beilstein Journal of Organic Chemistry, 2016, 12, 1302-1308.	2.2	4
34	Synthesis of Fluorenes Starting from 2-Iodobiphenyls and CH ₂ Br ₂ through Palladium-Catalyzed Dual C–C Bond Formation. Organic Letters, 2016, 18, 2958-2961.	4.6	75
35	Sequential Difunctionalization of 2-lodobiphenyls by Exploiting the Reactivities of a Palladacycle and an Acyclic Arylpalladium Species. Organic Letters, 2016, 18, 2130-2133.	4.6	48
36	An Approach to Tetraphenylenes via Pd-Catalyzed C–H Functionalization. Organic Letters, 2016, 18, 2032-2035.	4.6	59

#	Article	IF	CITATIONS
37	Amino acid-promoted C–H alkylation with alkylboronic acids using a removable directing group. Organic and Biomolecular Chemistry, 2016, 14, 4585-4589.	2.8	12
38	Synthesis of Triphenylenes Starting from 2-Iodobiphenyls and Iodobenzenes via Palladium-Catalyzed Dual C–H Activation and Double C–C Bond Formation. Organic Letters, 2016, 18, 5192-5195.	4.6	62
39	Easy Access to Difluoromethyleneâ€Containing Arene Analogues through Palladiumâ€Catalysed C–H Olefination. European Journal of Organic Chemistry, 2016, 2016, 5529-5538.	2.4	9
40	Synthesis of Unsymmetrically Disubstituted Tetraphenylenes via Carbonyl-Directed C–H Functionalization. Synlett, 2016, 27, 1997-2002.	1.8	2
41	A Versatile Approach for the Synthesis of para-Substituted Arenes via Palladium-Catalyzed C–H Functionalization and Protodecarboxylation of Benzoic Acids. Synlett, 2016, 27, 277-281.	1.8	13
42	Ligandâ€Promoted Oxidative Cross oupling of Aryl Boronic Acids and Aryl Silanes by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 4079-4082.	13.8	29
43	Palladium-Catalyzed C–H Ethoxycarbonyldifluoromethylation of Electron-Rich Heteroarenes. Organic Letters, 2015, 17, 2652-2655.	4.6	76
44	Silver-Catalyzed C–H Trifluoromethylation of Arenes Using Trifluoroacetic Acid as the Trifluoromethylating Reagent. Organic Letters, 2015, 17, 38-41.	4.6	115
45	Copper-catalyzed amide bond formation from formamides and carboxylic acids. Chinese Chemical Letters, 2015, 26, 11-14.	9.0	27
46	Copper atalyzed Decarboxylative Methylation of Aromatic Carboxylic Acids with PhI(OAc) ₂ . European Journal of Organic Chemistry, 2014, 2014, 2027-2031.	2.4	14
47	Carboxylateâ€Directed CH Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1419-1442.	4.3	171
48	Copper-catalyzed highly efficient ester formation from carboxylic acids/esters and formates. Organic and Biomolecular Chemistry, 2014, 12, 2637-2640.	2.8	8
49	Palladium-Catalyzed Benzylation of Carboxylic Acids with Toluene via Benzylic C–H Activation. Organic Letters, 2013, 15, 4098-4101.	4.6	97
50	Divergent C–H Functionalizations Directed by Sulfonamide Pharmacophores: Late-Stage Diversification as a Tool for Drug Discovery. Journal of the American Chemical Society, 2011, 133, 7222-7228.	13.7	426
51	Differential Induction of Innate Immune Responses by Synthetic Lipid A Derivatives*. Journal of Biological Chemistry, 2010, 285, 29375-29386.	3.4	48
52	Pd(II)-Catalyzed Enantioselective Câ^'H Olefination of Diphenylacetic Acids. Journal of the American Chemical Society, 2010, 132, 460-461.	13.7	427
53	Palladium(II)â€Catalyzed <i>ortho</i> Alkylation of Benzoic Acids with Alkyl Halides. Angewandte Chemie - International Edition, 2009, 48, 6097-6100.	13.8	255
54	Pd(II)-Catalyzed Olefination of Electron-Deficient Arenes Using 2,6-Dialkylpyridine Ligands. Journal of the American Chemical Society, 2009, 131, 5072-5074.	13.7	512

#	Article	IF	CITATIONS
55	Pd(II)-Catalyzed Hydroxylation of Arenes with 1 atm of O ₂ or Air. Journal of the American Chemical Society, 2009, 131, 14654-14655.	13.7	399
56	Innate Immune Responses of Synthetic Lipid A Derivatives of <i>Neisseria meningitidis</i> . Chemistry - A European Journal, 2008, 14, 558-569.	3.3	56
57	Pd ^{II} â€Catalyzed Enantioselective Activation of C(sp ²)H and C(sp ³)H Bonds Using Monoprotected Amino Acids as Chiral Ligands. Angewandte Chemie - International Edition, 2008, 47, 4882-4886.	13.8	617
58	Synthetic tetra-acylated derivatives of lipid A from Porphyromonas gingivalis are antagonists of human TLR4. Organic and Biomolecular Chemistry, 2008, 6, 3371.	2.8	42
59	Modulation of Innate Immune Responses with Synthetic Lipid A Derivatives. Journal of the American Chemical Society, 2007, 129, 5200-5216.	13.7	67
60	The influence of the long chain fatty acid on the antagonistic activities of Rhizobium sin-1 lipid A. Bioorganic and Medicinal Chemistry, 2007, 15, 4800-4812.	3.0	11
61	The 2-Aminogluconate Isomer of Rhizobium sin-1 Lipid A Can Antagonize TNF-α Production Induced by Enteric LPS. ChemBioChem, 2006, 7, 140-148.	2.6	10