Chong Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/822908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen-enriched hierarchical porous carbons derived from biomass waste-discarded pear for ultra-high energy density supercapacitor in neutral aqueous electrolyte. Diamond and Related Materials, 2022, 121, 108728.	3.9	10
2	Superâ€robust Xanthineâ€Sodium Complexes on Au(111). Angewandte Chemie - International Edition, 2022, , .	13.8	1
3	Waste-converted nitrogen and fluorine co-doped porous carbon nanosheets for high performance supercapacitor with ionic liquid electrolyte. Journal of Colloid and Interface Science, 2022, 616, 413-421.	9.4	24
4	One-step production of N, S co-doped honeycomb-like activated carbon from instant dry yeast for high gravimetric and volumetric performance supercapacitors. Diamond and Related Materials, 2022, 127, 109165.	3.9	8
5	Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances. Carbon, 2021, 179, 458-468.	10.3	133
6	Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition. Nature Chemistry, 2020, 12, 1035-1041.	13.6	41
7	Three-dimensional honeycomb-like porous carbon derived from Ganoderma lucidum spore for high-performance electrochemical capacitors. Ionics, 2020, 26, 5805-5815.	2.4	9
8	One-step production of N–O–P–S co-doped porous carbon from bean worms for supercapacitors with high performance. RSC Advances, 2020, 10, 30756-30766.	3.6	13
9	Molecular recognition and homochirality preservation of guanine tetrads in the presence of melamine. Nano Research, 2020, 13, 2427-2430.	10.4	5
10	Porous Carbon Hollow Rod for Supercapacitors with High Energy Density. Industrial & Engineering Chemistry Research, 2019, 58, 22124-22132.	3.7	19
11	One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy, 2018, 47, 547-555.	16.0	547
12	Biowaste-Derived Hierarchical Porous Carbon Nanosheets for Ultrahigh Power Density Supercapacitors. ChemSusChem, 2018, 11, 1678-1685.	6.8	90
13	Xanthine Quartets on Au(111). Journal of the American Chemical Society, 2018, 140, 54-57.	13.7	20
14	Formation of Hypoxanthine Tetrad by Reaction with Sodium Chloride: From Planar to Stereo. Angewandte Chemie, 2018, 130, 16247-16251.	2.0	4
15	Formation of Hypoxanthine Tetrad by Reaction with Sodium Chloride: From Planar to Stereo. Angewandte Chemie - International Edition, 2018, 57, 16015-16019.	13.8	11
16	Hierarchical porous graphitic carbon for high-performance supercapacitors at high temperature. RSC Advances, 2017, 7, 34488-34496.	3.6	12
17	Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction. Chemical Communications, 2016, 52, 11912-11914.	4.1	83
18	Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy, 2016, 27, 377-389.	16.0	391

CHONG CHEN

#	Article	IF	CITATIONS
19	Sensitive Room Temperature Photoluminescence-Based Sensing of H ₂ S with Novel CuO–ZnO Nanorods. ACS Applied Materials & Interfaces, 2016, 8, 16379-16385.	8.0	74
20	Porous carbon synthesized by direct carbonization of potassium biphthalate for high-performance supercapacitors. Journal of Solid State Electrochemistry, 2014, 18, 59-67.	2.5	19
21	Gelatin-derived nitrogen-doped porous carbon via a dual-template carbonization method for high performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 10903.	10.3	128
22	A general approach for producing nanoporous carbon, especially as evidenced for the case of adipic acid and zinc. Journal of Materials Chemistry A, 2013, 1, 14919.	10.3	23
23	Nitrogen-Doped Porous Carbon Prepared from Urea Formaldehyde Resins by Template Carbonization Method for Supercapacitors. Industrial & Engineering Chemistry Research, 2013, 52, 10181-10188.	3.7	64
24	Nitrogen-Doped Porous Carbon Spheres Derived from Polyacrylamide. Industrial & Engineering Chemistry Research, 2013, 52, 12025-12031.	3.7	50
25	A general conversion of polyacrylate–metal complexes into porous carbons especially evinced in the case of magnesium polyacrylate. Journal of Materials Chemistry A, 2013, 1, 4017.	10.3	26
26	High performance porous carbon through hard–soft dual templates for supercapacitor electrodes. Journal of Materials Chemistry A, 2013, 1, 7379.	10.3	57
27	Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources, 2013, 230, 50-58.	7.8	256
28	Superâ $\epsilon_{\mathbf{f}}$ obust Xanthineâ $\epsilon_{\mathbf{S}}$ odium Complexes on Au(111). Angewandte Chemie, 0, , .	2.0	0