Sevil Köse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8229039/publications.pdf

Version: 2024-02-01

		933447	996975
27	262	10	15
papers	citations	h-index	g-index
27	27	27	385
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Endocannabinoids modulate apoptosis in endometriosis and adenomyosis. Acta Histochemica, 2017, 119, 523-532.	1.8	34
2	DICER1 gene and miRNA dysregulation in mesenchymal stem cells of patients with myelodysplastic syndrome and acute myeloblastic leukemia. Leukemia Research, 2017, 63, 62-71.	0.8	29
3	Human bone marrow mesenchymal stem cells secrete endocannabinoids that stimulate in vitro hematopoietic stem cell migration effectively comparable to beta-adrenergic stimulation. Experimental Hematology, 2018, 57, 30-41.e1.	0.4	24
4	The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells. Biological Trace Element Research, 2020, 193, 364-376.	3.5	24
5	Lactobacillus rhamnosus could inhibit Porphyromonas gingivalis derived CXCL8 attenuation. Journal of Applied Oral Science, 2016, 24, 67-75.	1.8	23
6	Boron Containing Nano Hydroxyapatites (B-n-HAp) Stimulate Mesenchymal Stem Cell Adhesion, Proliferation and Differentiation. Key Engineering Materials, 0, 631, 373-378.	0.4	19
7	Stem Cell and Advanced Nano Bioceramic Interactions. Advances in Experimental Medicine and Biology, 2018, 1077, 317-342.	1.6	16
8	Evaluation of biocompatibility of random or aligned electrospun polyhydroxybutyrate scaffolds combined with human mesenchymal stem cells. Turkish Journal of Biology, 2016, 40, 410-419.	0.8	13
9	Mesenchymal Stem Cells and Nano-Bioceramics for Bone Regeneration. Current Stem Cell Research and Therapy, 2016, 11, 487-493.	1.3	13
10	Neurological Regulation of the Bone Marrow Niche. Advances in Experimental Medicine and Biology, 2019, 1212, 127-153.	1.6	11
11	Leptin promotes proliferation of neonatal mouse stem/progenitor spermatogonia. Journal of Assisted Reproduction and Genetics, 2020, 37, 2825-2838.	2.5	10
12	Biomaterial and Stem Cell Interactions: Histological Biocompatibility. Current Stem Cell Research and Therapy, 2016, 11, 475-486.	1.3	10
13	Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Scientific Reports, 2022, 12, .	3.3	9
14	Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. Advances in Experimental Medicine and Biology, 2018, 1107, 15-40.	1.6	8
15	Magnetic-Based Cell Isolation Technique for the Selection of Stem Cells. Methods in Molecular Biology, 2018, 1879, 153-163.	0.9	5
16	Human laryngeal squamous cell carcinoma cell line release of endogenous anandamide and 2-arachidonoylglycerol, and their antiproliferative effect via exogenous supplementation: an in vitro study. Cell and Tissue Banking, 2022, 23, 93-100.	1.1	5
17	Characterization of mesenchymal stem cells in mucolipidosis type II (I-cell disease). Turkish Journal of Biology, 2019, 43, 171-178.	0.8	3
18	G-CSF treatment of healthy pediatric donors affects their hematopoietic microenvironment through changes in bone marrow plasma cytokines and stromal cells. Cytokine, 2021, 139, 155407.	3.2	3

Sevil Köse

#	Article	IF	CITATIONS
19	Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. Advances in Experimental Medicine and Biology, 2021, , 135-162.	1.6	3
20	Assessment of human bone marrow plasma samples suggests a different role for mesenchymal stromal cells in distinct areas mediated by PDGF-BB/PDGF-R. Experimental Hematology, 2013, 41, S61.	0.4	0
21	Iron oxide nanoparticle labeling of mesenchymal stromal cells. Experimental Hematology, 2013, 41, S61.	0.4	0
22	Interaction of mesenchymal stem and HeLa cells with gold nanoparticles. Current Opinion in Biotechnology, 2013, 24, S109-S110.	6.6	0
23	Polymeric scaffolds with different alignment and their interactions with bone marrow-derived mesenchymal stem cells. Experimental Hematology, 2013, 41, S62.	0.4	0
24	Differential cytokine expression profile of healthy human bone marrow plasma samples from the endosteal and vascular region. Experimental Hematology, 2013, 41, S61.	0.4	0
25	Lactic acid bacteria can reduce TLR-4 expression on inflammated gingival fibroblasts and mesenchymal stem cells in vitro. Experimental Hematology, 2013, 41, S62.	0.4	0
26	Effects of in-vivo G-CSF stimulation on cytokine levels in bone marrow plasma samples from healthy donors. Experimental Hematology, 2013, 41, S60.	0.4	0
27	Stem Cell Therapy and Orthopedics. , 2016, , 269-281.		0