

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228926/publications.pdf Version: 2024-02-01

Δνις 7ερ

#	Article	IF	CITATIONS
1	One-Step Growth of Iron–Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 28627-28634.	8.0	116
2	Highly efficient sustainable photocatalytic Z-scheme hydrogen production from an α-Fe2O3 engineered ZnCdS heterostructure. Journal of Catalysis, 2017, 353, 81-88.	6.2	78
3	Metal–Organic Frameworks and Their Derivatives as Cathodes for Lithium-Ion Battery Applications: A Review. Electrochemical Energy Reviews, 2022, 5, 312-347.	25.5	75
4	Highly dispersed ultra-small Pd nanoparticles on gadolinium hydroxide nanorods for efficient hydrogenation reactions. Nanoscale, 2017, 9, 13800-13807.	5.6	72
5	Enhanced Electrocatalytic Performance of Pt ₃ Pd ₁ Alloys Supported on CeO ₂ /C for Methanol Oxidation and Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2017, 121, 2069-2079.	3.1	65
6	Single Phase PtAg Bimetallic Alloy Nanoparticles Highly Dispersed on Reduced Graphene Oxide for Electrocatalytic Application of Methanol Oxidation Reaction. Electrochimica Acta, 2016, 197, 117-125.	5.2	64
7	Highly Efficient Fenton and Enzyme-Mimetic Activities of Mixed-Phase VO _{<i>x</i>} Nanoflakes. ACS Applied Materials & Interfaces, 2016, 8, 30126-30132.	8.0	61
8	Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020, 7, 4939-4955.	6.0	61
9	Heavy metal pollution assessment in various industries of Pakistan. Environmental Geology, 2008, 55, 353-358.	1.2	58
10	Pd/TiO Nanocatalyst with Strong Metal–Support Interaction for Highly Efficient Durable Heterogeneous Hydrogenation. Journal of Physical Chemistry C, 2017, 121, 1162-1170.	3.1	54
11	A Hybrid VO _{<i>x</i>} Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic <i>via</i> Cascade Reactions. ACS Nano, 2020, 14, 3017-3031.	14.6	53
12	Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive 90Sr2+ and 137Cs+ ions and oils. Scientific Reports, 2016, 6, 20920.	3.3	52
13	Plasmonic MoO _{3â~x} nanoparticles incorporated in Prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy. Journal of Materials Chemistry B, 2019, 7, 2032-2042.	5.8	51
14	Metal-organic frameworks and their derivatives as electrode materials for potassium ion batteries: A review. Coordination Chemistry Reviews, 2021, 446, 214118.	18.8	49
15	Recent progress in Co–based metal–organic framework derivatives for advanced batteries. Journal of Materials Science and Technology, 2022, 96, 262-284.	10.7	45
16	Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites. Chinese Journal of Catalysis, 2017, 38, 2110-2119.	14.0	43
17	Intrinsic peroxidase-like activity and enhanced photo-Fenton reactivity of iron-substituted polyoxometallate nanostructures. Dalton Transactions, 2018, 47, 7344-7352.	3.3	39
18	Synergistic effect of graphene and multi-walled carbon nanotubes composite supported Pd nanocubes on enhancing catalytic activity for electro-oxidation of formic acid. Catalysis Science and Technology, 2016, 6, 4794-4801.	4.1	38

AKIF ZEB

#	Article	IF	CITATIONS
19	Nanostructured Iron Fluoride Derived from Fe-Based Metal–Organic Framework for Lithium Ion Battery Cathodes. Inorganic Chemistry, 2020, 59, 12700-12710.	4.0	30
20	Oxygen vacancy engineering of carbon-encapsulated (Co,Mn)(Co,Mn)2O4 from metal-organic framework towards boosted lithium storage. Chemical Engineering Journal, 2021, 425, 130661.	12.7	29
21	Hydrogen-bonding-assisted charge transfer: significantly enhanced photocatalytic H ₂ evolution over g-C ₃ N ₄ anchored with ferrocene-based hole relay. Catalysis Science and Technology, 2018, 8, 2853-2859.	4.1	28
22	Arsenic Removal from Aqueous Solution Using Pure and Metal-Doped Titania Nanoparticles Coated on Glass Beads: Adsorption and Column Studies. Journal of Nanomaterials, 2013, 2013, 1-17.	2.7	27
23	Metal–organic framework-based materials for full cell systems: a review. Journal of Materials Chemistry C, 2021, 9, 11030-11058.	5.5	26
24	Fe-Based metal–organic frameworks as functional materials for battery applications. Inorganic Chemistry Frontiers, 2022, 9, 827-844.	6.0	24
25	Recent advances in Fe-based metal–organic framework derivatives for battery applications. Sustainable Energy and Fuels, 2022, 6, 2665-2691.	4.9	15
26	Metal–organic frameworks and their derivatives as electrode materials for Li-ion batteries: a mini review. CrystEngComm, 2022, 24, 2729-2743.	2.6	14
27	A review on metal–organic framework-derived anode materials for potassium-ion batteries. Dalton Transactions, 2021, 50, 9669-9684.	3.3	13
28	Carbonâ€encapsulated anionicâ€defective MnO/Ni open microcages: A hierarchical stressâ€release engineering for superior lithium storage. , 2023, 5, .		13
29	Recent Advances in Cu-Based Metal–Organic Frameworks and Their Derivatives for Battery Applications. ACS Applied Energy Materials, 2022, 5, 7842-7873.	5.1	11
30	Carbon nitride embedded MnO2 nanospheres decorated with low-content Pt nanoparticles as highly efficient and durable electrode material for solid state supercapacitors. Journal of Electroanalytical Chemistry, 2017, 801, 84-91.	3.8	8
31	Preparation and properties of hierarchical Al–Mg layered double hydroxides as UV resistant hydrotalcite. Materials Chemistry and Physics, 2020, 256, 123630.	4.0	7
32	Synthesis and characterization of novel coral-like hollow CeO2 nanostructures and their potential as peroxidase mimics. Solid State Sciences, 2019, 97, 106011.	3.2	6
33	Nickel-based metal–organic framework-derived Ni/NC/KB as a separator coating for high capacity lithium–sulfur batteries. Sustainable Energy and Fuels, 2021, 5, 6372-6380.	4.9	6
34	Binary cobalt-iron oxides magnetic nanocomposites embedded porous carbon lawn with inherent N doping as promising electrode material for supercapacitors and Li-ion batteries. Journal of Electroanalytical Chemistry, 2019, 848, 113344.	3.8	5
35	Interfacial Engineering of Defectâ€Rich and Multiâ€Heteroatomâ€Doped Metal–Organic Frameworkâ€Derived Manganese Fluoride Anodes to Boost Lithium Storage. Energy and Environmental Materials, 2023, 6, .	12.8	4
36	Catalytic Conversion of Biomass into Hydrocarbons over Nobleâ€Metalâ€Free VOâ€Substituted Potassium Salt of Phosphotungstic Acid. ChemistrySelect, 2017, 2, 8625-8631.	1.5	3

Ακιγ Ζεβ

#	Article	IF	CITATIONS
37	Cobalt-based metal–organic frameworks as functional materials for battery applications. CrystEngComm, 2021, 23, 5140-5152.	2.6	3
38	A metal–organic framework approach to engineer mesoporous ZnMnO3/C towards enhanced lithium storage. Sustainable Energy and Fuels, 0, , .	4.9	3
39	Nanostructural synergism as Mn N C channels in manganese (IV) oxide and fluffy g-C3N4 layered composite with exceptional catalytic capabilities. Journal of Colloid and Interface Science, 2022, 610, 258-270.	9.4	2
40	Rational Design of Bimetallic Zeolitic Imidazolate Frameworkâ€Đerived C, N Dualâ€Đoped ZnO/Co for Boosting Lithium Storage. Advanced Sustainable Systems, 2022, 6, .	5.3	1
41	Ultra-Low PtRu Fabrication on Graphene Oxide Supported Pd Nanoparticles with Enhanced Anodic Performance for Direct Methanol Fuel Cells. Energy and Environment Focus, 2016, 5, 299-304.	0.3	Ο
42	Synthesis of Multicatalytic Nano-Magnetic Ceria with a Double <i>in situ</i> Hydrothermal Method for Phosphate Ions Removal and Peroxidase Mimicking. Nano, 0, , .	1.0	0