Peter M J Herman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228910/publications.pdf

Version: 2024-02-01

274 papers 19,839 citations

7087 78 h-index 129 g-index

281 all docs

281 docs citations

times ranked

281

12804 citing authors

#	Article	IF	Citations
1	Modeling Decadal Salt Marsh Development: Variability of the Salt Marsh Edge Under Influence of Waves and Sediment Availability. Water Resources Research, 2022, 58, .	1.7	22
2	A probabilistic framework for windows of opportunity: the role of temporal variability in critical transitions. Journal of the Royal Society Interface, 2022, 19, 20220041.	1.5	6
3	Tropical Biogeomorphic Seagrass Landscapes for Coastal Protection: Persistence and Wave Attenuation During Major Storms Events. Ecosystems, 2021, 24, 301-318.	1.6	24
4	Conservation Implications of Sabellaria spinulosa Reef Patches in a Dynamic Sandy-Bottom Environment. Frontiers in Marine Science, 2021, 8, .	1.2	4
5	A Mega-Nourishment (Sand Motor) Affects Landscape Diversity of Subtidal Benthic Fauna. Frontiers in Marine Science, 2021, 8, .	1.2	9
6	Mapping Mangrove Opportunities with Open Access Data: A Case Study for Bangladesh. Sustainability, 2021, 13, 8212.	1.6	4
7	Plant traits determining biogeomorphic landscape dynamics: A study on clonal expansion strategies driving cliff formation at marsh edges. Limnology and Oceanography, 2021, 66, 3754-3767.	1.6	5
8	Beyond connecting the dots: A multi-scale, multi-resolution approach to marine habitat mapping. Ecological Indicators, 2021, 128, 107849.	2.6	4
9	Online-coupling of widely-ranged timescales to model coral reef development. Environmental Modelling and Software, 2021, 143, 105103.	1.9	1
10	Salt marsh establishment in poorly consolidated muddy systems: effects of surface drainage, elevation, and plant age. Ecosphere, 2021, 12, e03755.	1.0	6
11	Modelling spatial and temporal patterns in bioturbator effects on sediment resuspension: A biophysical metabolic approach. Science of the Total Environment, 2021, 792, 148215.	3.9	14
12	Water motion and vegetation control the pH dynamics in seagrassâ€dominated bays. Limnology and Oceanography, 2020, 65, 349-362.	1.6	11
13	Wave effects on seedling establishment of three pioneer marsh species: survival, morphology and biomechanics. Annals of Botany, 2020, 125, 345-352.	1.4	31
14	Exploring the Trophic Spectrum: Placing Mixoplankton Into Marine Protist Communities of the Southern North Sea. Frontiers in Marine Science, 2020, 7, .	1.2	10
15	The potential of coastal ecosystems to mitigate the impact of sea-level rise in shallow tropical bays. Estuarine, Coastal and Shelf Science, 2020, 246, 107050.	0.9	11
16	Spatial variability in macrofaunal diet composition and grazing pressure on microphytobenthos in intertidal areas. Limnology and Oceanography, 2020, 65, 2819-2834.	1.6	13
17	Variations in storm-induced bed level dynamics across intertidal flats. Scientific Reports, 2020, 10, 12877.	1.6	13
18	Measuring Centimeter-Scale Sand Ripples Using Multibeam Echosounder Backscatter Data from the Brown Bank Area of the Dutch Continental Shelf. Geosciences (Switzerland), 2020, 10, 495.	1.0	4

#	Article	IF	CITATIONS
19	Seagrass coastal protection services reduced by invasive species expansion and megaherbivore grazing. Journal of Ecology, 2020, 108, 2025-2037.	1.9	23
20	Biological and physical drivers of bio-mediated sediment resuspension: A flume study on Cerastoderma edule. Estuarine, Coastal and Shelf Science, 2020, 241, 106824.	0.9	21
21	Seasonal and Spatial Variability in Patchiness of Microphytobenthos on Intertidal Flats From Sentinel-2 Satellite Imagery. Frontiers in Marine Science, 2020, 7, .	1.2	16
22	Linking the morphology and ecology of subtidal soft-bottom marine benthic habitats: A novel multiscale approach. Estuarine, Coastal and Shelf Science, 2020, 238, 106687.	0.9	13
23	Sediment Disposals in Estuarine Channels Alter the Ecoâ€Morphology of Intertidal Flats. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005432.	1.0	9
24	Benthic Species Distribution Linked to Morphological Features of a Barred Coast. Journal of Marine Science and Engineering, 2020, 8, 16.	1.2	9
25	Ecosystem engineering creates a new path to resilience in plants with contrasting growth strategies. Oecologia, 2019, 191, 1015-1024.	0.9	3
26	Sandification vs. muddification of tidal flats by benthic organisms: A flume study. Estuarine, Coastal and Shelf Science, 2019, 228, 106355.	0.9	15
27	A process based model of cohesive sediment resuspension under bioturbators' influence. Science of the Total Environment, 2019, 670, 18-30.	3.9	25
28	The European Marine Observation and Data Network (EMODnet): Visions and Roles of the Gateway to Marine Data in Europe. Frontiers in Marine Science, 2019, 6, .	1.2	53
29	Maintaining Tropical Beaches with Seagrass and Algae: A Promising Alternative to Engineering Solutions. BioScience, 2019, 69, 136-142.	2.2	56
30	Discovery of Sabellaria spinulosa reefs in an intensively fished area of the Dutch Continental Shelf, North Sea. Journal of Sea Research, 2019, 144, 85-94.	0.6	21
31	Conditional effects of tides and waves on shortâ€term marsh sedimentation dynamics. Earth Surface Processes and Landforms, 2018, 43, 2243-2255.	1.2	6
32	The combined influence of body size and density on cohesive sediment resuspension by bioturbators. Scientific Reports, 2018, 8, 3831.	1.6	19
33	A model to assess microphytobenthic primary production in tidal systems using satellite remote sensing. Remote Sensing of Environment, 2018, 211, 129-145.	4.6	37
34	Shellfish Reefs Increase Water Storage Capacity on Intertidal Flats Over Extensive Spatial Scales. Ecosystems, 2018, 21, 360-372.	1.6	4
35	Seasonal and latitudinal variation in seagrass mechanical traits across Europe: The influence of local nutrient status and morphometric plasticity. Limnology and Oceanography, 2018, 63, 37-46.	1.6	22
36	Latitudinal Patterns in European Seagrass Carbon Reserves: Influence of Seasonal Fluctuations versus Short-Term Stress and Disturbance Events. Frontiers in Plant Science, 2018, 9, 88.	1.7	18

#	Article	IF	CITATIONS
37	Tidal flat-wetland systems as flood defenses: Understanding biogeomorphic controls. Estuarine, Coastal and Shelf Science, 2018, 213, 269-282.	0.9	62
38	The use of multiple biological traits in marine community ecology and its potential in ecological indicator development. Ecological Indicators, 2017, 76, 81-96.	2.6	152
39	Long-term trends in nutrient budgets of the western Dutch Wadden Sea (1976–2012). Journal of Sea Research, 2017, 127, 82-94.	0.6	11
40	Hydrodynamic conditioning of diversity and functional traits in subtidal estuarine macrozoobenthic communities. Estuarine, Coastal and Shelf Science, 2017, 197, 80-92.	0.9	28
41	Behavioral self-organization underlies the resilience of a coastal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8035-8040.	3.3	55
42	Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nature Communications, 2017, 8, 15811.	5.8	86
43	A modeling approach to assess coastal management effects on benthic habitat quality: A case study on coastal defense and navigability. Estuarine, Coastal and Shelf Science, 2017, 184, 67-82.	0.9	29
44	Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion. Journal of Geophysical Research F: Earth Surface, 2017, 122, 1455-1470.	1.0	50
45	Population dynamics of subtidal blue mussels Mytilus edulis and the impact of cultivation. Aquaculture Environment Interactions, 2017, 9, 155-168.	0.7	14
46	Response of intertidal benthic macrofauna to migrating megaripples and hydrodynamics. Marine Ecology - Progress Series, 2017, 585, 17-30.	0.9	12
47	Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnology and Oceanography, 2016, 61, 2261-2275.	1.6	126
48	Sprouting as a gardening strategy to obtain superior supplementary food: evidence from a seedâ€eaching marine worm. Ecology, 2016, 97, 3278-3284.	1.5	19
49	Interactive effects between physical forces and ecosystem engineers on seed burial: a case study using <i>Spartina anglica</i> . Oikos, 2016, 125, 98-106.	1.2	20
50	Guidelines for evaluating performance of oyster habitat restoration should include tidal emersion: reply to Baggett et al Restoration Ecology, 2016, 24, 4-7.	1.4	36
51	The exchange of dissolved nutrients between the water column and substrate pore-water due to hydrodynamic adjustment at seagrass meadow edges: A flume study. Limnology and Oceanography, 2016, 61, 2286-2295.	1.6	5
52	Phase separation driven by density-dependent movement: A novel mechanism for ecological patterns. Physics of Life Reviews, 2016, 19, 107-121.	1.5	46
53	Bridging physics and biology. Physics of Life Reviews, 2016, 19, 142-146.	1.5	2
54	On the potential of plant species invasion influencing bioâ€geomorphologic landscape formation in salt marshes. Earth Surface Processes and Landforms, 2016, 41, 2047-2057.	1.2	26

#	Article	IF	CITATIONS
55	Effect of seeding density on biomass production in mussel bottom culture. Journal of Sea Research, 2016, 110, 8-15.	0.6	27
56	Understanding seagrass resilience in temperate systems: the importance of timing of the disturbance. Ecological Indicators, 2016, 66, 190-198.	2.6	10
57	Niche dimension differs among life-history stages of Pacific oysters in intertidal environments. Marine Ecology - Progress Series, 2016, 562, 113-122.	0.9	5
58	Remote Sensing of Epibenthic Shellfish Using Synthetic Aperture Radar Satellite Imagery. Remote Sensing, 2015, 7, 3710-3734.	1.8	20
59	Particulate Matter in Mangrove Forests and Seagrass Beds as a Nitrogen Source in Tropical Coastal Ecosystems. Biotropica, 2015, 47, 286-291.	0.8	5
60	Limits to seaward expansion of mangroves: Translating physical disturbance mechanisms into seedling survival gradients. Journal of Experimental Marine Biology and Ecology, 2015, 467, 16-25.	0.7	36
61	Demography of the ecosystem engineer Crassostrea gigas, related to vertical reef accretion and reef persistence. Estuarine, Coastal and Shelf Science, 2015, 154, 224-233.	0.9	51
62	Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems. Geomorphology, 2015, 250, 298-307.	1.1	36
63	A Mixed Modeling Approach to Predict the Effect of Environmental Modification on Species Distributions. PLoS ONE, 2014, 9, e89131.	1.1	20
64	Impacts of salt marsh plants on tidal channel initiation and inheritance. Journal of Geophysical Research F: Earth Surface, 2014, 119, 385-400.	1.0	51
65	Critical transitions in disturbanceâ€driven ecosystems: identifying <scp>W</scp> indows of <scp>O</scp> pportunity for recovery. Journal of Ecology, 2014, 102, 700-708.	1.9	208
66	Biogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds. Journal of the Royal Society Interface, 2014, 11, 20140089.	1.5	11
67	Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132890.	1.2	123
68	How superdiffusion gets arrested: ecological encounters explain shift from Lévy to Brownian movement. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132605.	1.2	54
69	Damming deltas: A practice of the past? Towards nature-based flood defenses. Estuarine, Coastal and Shelf Science, 2014, 140, 1-6.	0.9	84
70	Spatial organisation and biomass development after relaying of mussel seed. Journal of Sea Research, 2014, 85, 395-403.	0.6	37
71	Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & Deportunities &	1.7	244
72	Reproductive phenology of coastal marine bivalves in a seasonal environment. Journal of Plankton Research, 2014, 36, 1512-1527.	0.8	29

#	Article	IF	Citations
73	Pattern formation at multiple spatial scales drives the resilience of mussel bed ecosystems. Nature Communications, 2014, 5, 5234.	5.8	127
74	Cover versus recovery: Contrasting responses of two indicators in seagrass beds. Marine Pollution Bulletin, 2014, 87, 211-219.	2.3	9
75	Long-term salt marsh vertical accretion in a tidal bay with reduced sediment supply. Estuarine, Coastal and Shelf Science, 2014, 146, 14-23.	0.9	20
76	Formation and erosion of biogeomorphological structures: A model study on the tubeâ€building polychaete <i>Lanice conchilega</i> Limnology and Oceanography, 2014, 59, 1297-1309.	1.6	22
77	Tiny Is Mighty: Seagrass Beds Have a Large Role in the Export of Organic Material in the Tropical Coastal Zone. PLoS ONE, 2014, 9, e111847.	1.1	24
78	Leaf transport in mimic mangrove forests and seagrass beds. Marine Ecology - Progress Series, 2014, 498, 95-102.	0.9	15
79	Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology - Progress Series, 2014, 503, 289-303.	0.9	86
80	Comparison of the influence of patch-scale and meadow-scale characteristics on flow within seagrass meadows: a flume study. Marine Ecology - Progress Series, 2014, 516, 49-59.	0.9	19
81	Seed arrival and persistence at the tidal mudflat: identifying key processes for pioneer seedling establishment in salt marshes. Marine Ecology - Progress Series, 2014, 513, 97-109.	0.9	42
82	Seedling establishment in a dynamic sedimentary environment: a conceptual framework using mangroves. Journal of Applied Ecology, 2013, 50, 740-747.	1.9	106
83	Ecosystem-based coastal defence in the face of global change. Nature, 2013, 504, 79-83.	13.7	1,178
84	Application of non-linear quantile regression to macrozoobenthic species distribution modelling: comparing two contrasting basins. Marine Ecology - Progress Series, 2013, 475, 119-133.	0.9	35
85	Organism traits determine the strength of scale-dependent bio-geomorphic feedbacks: A flume study on three intertidal plant species. Geomorphology, 2013, 180-181, 57-65.	1.1	108
86	Phase separation explains a new class of self-organized spatial patterns in ecological systems. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11905-11910.	3.3	137
87	Cross-shore gradients of physical disturbance in mangroves: implications for seedling establishment. Biogeosciences, 2013, 10, 5411-5419.	1.3	43
88	Low-Canopy Seagrass Beds Still Provide Important Coastal Protection Services. PLoS ONE, 2013, 8, e62413.	1.1	200
89	Extreme Variations of pCO2 and pH in a Macrophyte Meadow of the Baltic Sea in Summer: Evidence of the Effect of Photosynthesis and Local Upwelling. PLoS ONE, 2013, 8, e62689.	1.1	117
90	Near-bed gradients in particles and nutrients above a mussel bed in the Limfjorden: influence of physical mixing and mussel filtration. Marine Ecology - Progress Series, 2013, 490, 137-146.	0.9	22

#	Article	IF	Citations
91	Carlo Heip (1945-2013). Scientia Marina, 2013, 77, 201-202.	0.3	1
92	Response to Comment on "Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity― Science, 2012, 335, 918-918.	6.0	31
93	Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2744-2753.	1.2	58
94	The influence of local- and landscape-scale processes on spatial self-organization in estuarine ecosystems. Journal of Experimental Biology, 2012, 215, 962-967.	0.8	48
95	Changes in diatom patchâ€size distribution and degradation in a spatially selfâ€organized intertidal mudflat ecosystem. Ecology, 2012, 93, 608-618.	1.5	63
96	Conditional outcome of ecosystem engineering: A case study on tussocks of the salt marsh pioneer Spartina anglica. Geomorphology, 2012, 153-154, 232-238.	1.1	62
97	The Wadden Sea Region: Towards a science for sustainable development. Ocean and Coastal Management, 2012, 68, 4-17.	2.0	59
98	Organism-Sediment Interactions Govern Post-Hypoxia Recovery of Ecosystem Functioning. PLoS ONE, 2012, 7, e49795.	1.1	56
99	Ecosystem Engineering Effects of Aster tripolium and Salicornia procumbens Salt Marsh on Macrofaunal Community Structure. Estuaries and Coasts, 2012, 35, 714-726.	1.0	8
100	Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity. Science, 2011, 332, 1551-1553.	6.0	236
101	Effects of mud sedimentation on lugworm ecosystem engineering. Journal of Sea Research, 2011, 65, 170-181.	0.6	15
102	Short and midâ€long term effects of cockleâ€dredging on nonâ€target macrobenthic species: a beforeâ€afterâ€controlâ€impact experiment on a tidal mudflat in the Oosterschelde (The Netherlands). Marine Ecology, 2011, 32, 117-129.	0.4	11
103	Ciliates as engineers of phototrophic biofilms. Freshwater Biology, 2011, 56, 1358-1369.	1.2	17
104	Ecological evaluation of an experimental beneficial use scheme for dredged sediment disposal in shallow tidal waters. Marine Pollution Bulletin, 2011, 62, 99-108.	2.3	22
105	A process-based model for erosion of Macoma balthica-affected mud beds. Continental Shelf Research, 2011, 31, 527-538.	0.9	18
106	Top-down control inhibits spatial self-organization of a patterned landscape. Ecology, 2011, 92, 487-495.	1.5	57
107	Abiotic Factors Governing the Establishment and Expansion of Two Salt Marsh Plants in the Yangtze Estuary, China. Wetlands, 2011, 31, 1011-1021.	0.7	34
108	Eco-Morphological Problems in the Yangtze Estuary and the Western Scheldt. Wetlands, 2011, 31, 1033-1042.	0.7	61

#	Article	lF	CITATIONS
109	Wave Attenuation by Two Contrasting Ecosystem Engineering Salt Marsh Macrophytes in the Intertidal Pioneer Zone. Wetlands, 2011, 31, 1043-1054.	0.7	90
110	Macrobenthos abundance and distribution on a spatially patterned intertidal flat. Marine Ecology - Progress Series, 2011, 440, 95-103.	0.9	24
111	Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology - Progress Series, 2011, 440, 1-9.	0.9	242
112	Do immigrants from Turkey, Pakistan and Yugoslavia receive adequate medical treatment with beta-blockers and statins after acute myocardial infarction compared with Danish-born residents? A register-based follow-up study. European Journal of Clinical Pharmacology, 2010, 66, 735-742.	0.8	35
113	Spatial Synchrony in Intertidal Benthic Algal Biomass in Temperate Coastal and Estuarine Ecosystems. Ecosystems, 2010, 13, 338-351.	1.6	75
114	Macrobenthos recruitment success in a tidal flat: Feeding trait dependent effects of disturbance history. Journal of Experimental Marine Biology and Ecology, 2010, 385, 79-84.	0.7	15
115	Long-term divergent tidal flat benthic community recovery following hypoxia-induced mortality. Marine Pollution Bulletin, 2010, 60, 178-186.	2.3	26
116	Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science, 2010, 89, 73-88.	0.9	142
117	Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology, 2010, 91, 2696-2704.	1.5	136
118	Spatial Selfâ€Organization on Intertidal Mudflats through Biophysical Stress Divergence. American Naturalist, 2010, 176, E15-E32.	1.0	90
119	Sediment segregation by biodiffusing bivalves. Estuarine, Coastal and Shelf Science, 2009, 83, 379-391.	0.9	56
120	Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgoland Marine Research, 2009, 63, 59-74.	1.3	74
121	On the parameterization of biological influences on offshore sand wave dynamics. Ocean Dynamics, 2009, 59, 659-670.	0.9	15
122	Seafloor ecosystem functioning: the importance of organic matter priming. Marine Biology, 2009, 156, 2277-2287.	0.7	93
123	Densityâ€dependent linkage of scaleâ€dependent feedbacks: a flume study on the intertidal macrophyte <i>Spartina anglica</i> . Oikos, 2009, 118, 260-268.	1.2	171
124	Modeling bio-geomorphological influences for offshore sandwaves. Continental Shelf Research, 2009, 29, 1289-1301.	0.9	37
125	Spatial distribution of detrital resources determines the outcome of competition between bacteria and a facultative detritivorous worm. Limnology and Oceanography, 2009, 54, 1413-1419.	1.6	43
126	MODELING BIO-GEOMORPHOLOGICAL INFLUENCES FOR OFFSHORE SANDWAVES., 2009, , .		0

#	Article	IF	CITATIONS
127	Tidal flat nematode responses to hypoxia and subsequent macrofauna-mediated alterations of sediment properties. Marine Ecology - Progress Series, 2009, 381, 189-197.	0.9	56
128	Distribution patterns of macrofaunal species diversity in subtidal soft sediments: biodiversity–productivity relationships from the MacroBen database. Marine Ecology - Progress Series, 2009, 382, 253-264.	0.9	14
129	Effects of shoot stiffness, shoot size and current velocity on scouring sediment from around seedlings and propagules. Marine Ecology - Progress Series, 2009, 388, 293-297.	0.9	93
130	Potential for Sudden Shifts in Transient Systems: Distinguishing Between Local and Landscape-Scale Processes. Ecosystems, 2008, 11, 1133-1141.	1.6	50
131	Spatial patterns, rates and mechanisms of saltmarsh cycles (Westerschelde, The Netherlands). Estuarine, Coastal and Shelf Science, 2008, 76, 357-368.	0.9	98
132	Does scaleâ€dependent feedback explain spatial complexity in saltâ€marsh ecosystems?. Oikos, 2008, 117, 152-159.	1.2	136
133	Experimental Evidence for Spatial Self-Organization and Its Emergent Effects in Mussel Bed Ecosystems. Science, 2008, 322, 739-742.	6.0	201
134	Distribution and dynamics of intertidal macrobenthos predicted from remote sensing: response to microphytobenthos and environment. Marine Ecology - Progress Series, 2008, 367, 57-72.	0.9	73
135	Macrobenthic recovery from hypoxia in an estuarine tidal mudflat. Marine Ecology - Progress Series, 2008, 372, 31-42.	0.9	74
136	Benthic community-mediated sediment dynamics. Marine Ecology - Progress Series, 2008, 372, 43-59.	0.9	74
137	Vegetation causes channel erosion in a tidal landscape. Geology, 2007, 35, 631.	2.0	325
138	Plant growth strategies directly affect biogeomorphology of estuaries., 2007,, 285-292.		1
139	Spatial flow and sedimentation patterns within patches of epibenthic structures: Combining field, flume and modelling experiments. Continental Shelf Research, 2007, 27, 1020-1045.	0.9	300
140	Organic matter processing in tidal estuaries. Marine Chemistry, 2007, 106, 127-147.	0.9	286
141	Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments. Remote Sensing of Environment, 2007, 111, 89-106.	4.6	55
142	Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos, 2007, 116, 742-750.	1.2	67
143	Impacts of Nutrient Reduction on Coastal Communities. Ecosystems, 2007, 10, 96-119.	1.6	157
144	Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos, 2007, 116, 742-750.	1.2	8

#	Article	IF	CITATIONS
145	Synoptic techniques for monitoring the response of intertidal benthic biota to an alternative dredging strategy., 2007,, 307-311.		0
146	Turbulence levels in a flume compared to the field: Implications for larval settlement studies. Journal of Sea Research, 2006, 55, 15-29.	0.6	20
147	Effects of mussel filtering activity on boundary layer structure. Journal of Sea Research, 2006, 55, 3-14.	0.6	70
148	Observing the sick child: Part 2a Respiratory assessment. Paediatric Nursing, 2006, 18, 38-44.	0.1	9
149	Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. Journal of Marine Research, 2006, 64, 453-482.	0.3	135
150	Persistence despite omnivory: benthic communities and the discrepancy between theory and observation. Oikos, 2006, 113, 23-32.	1.2	23
151	Pieter Hendrik Nienhuis: Aquatic Ecologist and Environmental Scientist. Hydrobiologia, 2006, 565, 1-18.	1.0	6
152	Nutrient dynamics in European water systemsÂâ€"Âthe management perspective emerging from ELOISE, a European cluster of LandÂâ€"ÂOcean interaction studies. Journal of Integrative Environmental Sciences, 2006, 3, 97-112.	0.8	2
153	The significance of spatial and temporal patterns of algal mat deposition in structuring salt marsh vegetation. Journal of Vegetation Science, 2006, 17, 291.	1.1	8
154	Predicting macrofaunal species distributions in estuarine gradients using logistic regression and classification systems. Marine Ecology - Progress Series, 2006, 316, 69-83.	0.9	51
155	Pieter Hendrik Nienhuis: aquatic ecologist and environmental scientist. , 2006, , 1-18.		0
156	Group report: Methodologies to support implementation of the water framework directive. , 2005, , 137-152.		6
157	Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery. Remote Sensing of Environment, 2005, 98, 96-109.	4.6	80
158	Flow hydrodynamics on a mudflat and in salt marsh vegetation: identifying general relationships for habitat characterisations. Hydrobiologia, 2005, 540, 259-274.	1.0	117
159	Group report: Global change and the European coast — climate change and economic development. Environmental Science, 2005, , 239-254.	0.1	4
160	Land-ocean fluxes and coastal ecosystems â€" a guided tour of ELOISE results. , 2005, , 21-58.		2
161	TRADE-OFFS RELATED TO ECOSYSTEM ENGINEERING: A CASE STUDY ON STIFFNESS OF EMERGING MACROPHYTES. Ecology, 2005, 86, 2187-2199.	1.5	359
162	Scaleâ€Dependent Feedback and Regular Spatial Patterns in Young Mussel Beds. American Naturalist, 2005, 165, E66-E77.	1.0	232

#	Article	IF	Citations
163	Selfâ€Organization and Vegetation Collapse in Salt Marsh Ecosystems. American Naturalist, 2005, 165, E1-E12.	1.0	242
164	Image analysis techniques: A tool for the identification of bivalve larvae?. Journal of Sea Research, 2005, 54, 151-162.	0.6	34
165	Uptake and allocation of 13C by Enhalus acoroides at sites differing in light availability. Aquatic Botany, 2005, 81, 353-366.	0.8	18
166	Oxygenation and organic-matter preservation in marine sediments: Direct experimental evidence from ancient organic carbon–rich deposits. Geology, 2005, 33, 889.	2.0	103
167	Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	250
168	Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels. Applied and Environmental Microbiology, 2005, 71, 3379-3383.	1.4	49
169	Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments. Journal of Marine Research, 2005, 63, 457-469.	0.3	117
170	Multi-scale analysis of species-environment relationships. Marine Ecology - Progress Series, 2005, 302, 13-26.	0.9	79
171	Respiration patterns in the deep ocean. Geophysical Research Letters, 2004, 31, .	1.5	63
172	Interspecific and intraspecific variation of Î'C and Î'N in deposit―and suspensionâ€feeding bivalves (<i>Macoma balthica</i> and <i>Cerastoderma edule</i>): Evidence of ontogenetic changes in feeding mode of <i>Macoma balthica</i> . Limnology and Oceanography, 2004, 49, 408-414.	1.6	119
173	Role of physical and biological processes in sediment dynamics of a tidal flat in Westerschelde Estuary, SW Netherlands. Marine Ecology - Progress Series, 2004, 274, 41-56.	0.9	103
174	Selective feeding of Eurytemora affinis (Copepoda, Calanoida) in temperate estuaries: model and field observations. Estuarine, Coastal and Shelf Science, 2003, 56, 305-311.	0.9	89
175	Large-scale spatial patterns in estuaries: estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuarine, Coastal and Shelf Science, 2003, 57, 335-355.	0.9	226
176	Effect of dietary polyunsaturated fatty acids on reproductive output and larval growth of bivalves. Journal of Experimental Marine Biology and Ecology, 2003, 296, 199-213.	0.7	81
177	Reactive transport in surface sediments. I. Model complexity and software quality. Computers and Geosciences, 2003, 29, 291-300.	2.0	33
178	Reactive transport in surface sediments. II. Media: an object-oriented problem-solving environment for early diagenesis. Computers and Geosciences, 2003, 29, 301-318.	2.0	67
179	Comparison of Models Describing Light Dependence of N2 Fixation in Heterocystous Cyanobacteria. Applied and Environmental Microbiology, 2002, 68, 4679-4683.	1.4	37
180	In the wake of darwin: using ab-initio continuum mechanics to describe the influence of macro-organisms on sediments. Developments in Water Science, 2002, 47, 587-592.	0.1	1

#	Article	IF	Citations
181	FEMME, a flexible environment for mathematically modelling the environment. Ecological Modelling, 2002, 151, 177-193.	1.2	67
182	A Model for Early Diagenetic Processes in Sediments of the Continental Shelf of the Black Sea. Estuarine, Coastal and Shelf Science, 2002, 54, 403-421.	0.9	96
183	Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Marine Ecology - Progress Series, 2002, 225, 79-95.	0.9	160
184	Tracing organic matter sources of estuarine tidal flat nematodes with stable carbon isotopes. Marine Ecology - Progress Series, 2002, 234, 127-137.	0.9	115
185	Bacteria and Foraminifera: key players in a short-term deep-sea benthic response to phytodetritus. Marine Ecology - Progress Series, 2002, 236, 23-29.	0.9	188
186	Spatial and temporal variation in benthic macrofauna and relationships with environmental variables in an estuarine, intertidal soft-sediment environment. Marine Ecology - Progress Series, 2002, 244, 105-124.	0.9	259
187	DO ALTERNATE STABLE STATES OCCUR IN NATURAL ECOSYSTEMS? EVIDENCE FROM A TIDAL FLAT. Ecology, 2001, 82, 3449-3461.	1.5	233
188	Benthic community structure and sediment processes on an intertidal flat: results from the ECOFLAT project. Continental Shelf Research, 2001, 21, 2055-2071.	0.9	164
189	Spatial pattern of early recruitment of Macoma balthica (L.) and Cerastoderma edule (L.) in relation to sediment dynamics on a highly dynamic intertidal sandflat. Journal of Sea Research, 2001, 45, 79-93.	0.6	58
190	Spatial and temporal variability of particle flux at the N.W. European continental margin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3083-3106.	0.6	25
191	Numerical modelling of the shelf break ecosystem: reproducing benthic and pelagic measurements. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3141-3177.	0.6	47
192	The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3223-3243.	0.6	88
193	The seafloor as the ultimate sediment trapâ€"using sediment properties to constrain benthicâ€"pelagic exchange processes at the Goban Spur. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 3245-3264.	0.6	31
194	Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea. Marine Chemistry, 2001, 74, 261-278.	0.9	102
195	Estimates of vertical mixing during a Lagrangian experiment off the Galician coast. Journal of Marine Systems, 2001, 30, 165-179.	0.9	5
196	Do Alternate Stable States Occur in Natural Ecosystems? Evidence from a Tidal Flat. Ecology, 2001, 82, 3449.	1.5	6
197	Effect of oxygen on the degradability of organic matter in subtidal and intertidal sediments of the North Sea area. Marine Ecology - Progress Series, 2001, 215, 13-22.	0.9	106
198	Migration of the bivalve Macoma balthica on a highly dynamic tidal flat in the Westerschelde estuary, The Netherlands. Marine Ecology - Progress Series, 2001, 224, 157-170.	0.9	27

#	Article	IF	CITATIONS
199	Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW) Tj ETQq1 1 0.7843	.4 rgBT /C	Verlock 10
200	On the coupling of benthic and pelagic biogeochemical models. Earth-Science Reviews, 2000, 51, 173-201.	4.0	152
201	The fate of intertidal microphytobenthos carbon: An in situ ¹³ C″abeling study. Limnology and Oceanography, 2000, 45, 1224-1234.	1.6	585
202	Benthic-pelagic exchange of microalgae at a tidal flat. 1. Pigment analysis. Marine Ecology - Progress Series, 2000, 196, 59-73.	0.9	92
203	Ecological significance of benthic foraminifera: 13C labelling experiments. Marine Ecology - Progress Series, 2000, 202, 289-295.	0.9	170
204	Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Marine Ecology - Progress Series, 2000, 204, 79-92.	0.9	247
205	Predation rates and prey selectivity in two predacious estuarine nematode species. Marine Ecology - Progress Series, 2000, 205, 185-193.	0.9	55
206	Enzymatically hydrolyzable amino acids in North Sea sediments and their possible implication for sediment nutritional values. Journal of Marine Research, 1999, 57, 109-134.	0.3	64
207	Linking diagenetic alteration of amino acids and bulk organic matter reactivity. Limnology and Oceanography, 1999, 44, 1809-1814.	1.6	397
208	Biogeochemistry of the MAximum TURbidity Zone of Estuaries (MATURE): some conclusions. Journal of Marine Systems, 1999, 22, 89-104.	0.9	85
209	Ecology of Estuarine Macrobenthos. Advances in Ecological Research, 1999, , 195-240.	1.4	314
210	Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf. Marine Ecology - Progress Series, 1999, 181, 25-39.	0.9	59
211	Organisation of microbenthic communities in intertidal Estuarine flats, a case study from the molenplaat (Westerschelde estuary, The Netherlands). European Journal of Protistology, 1998, 34, 308-320.	0.5	46
212	Assessing organic matter mineralization, degradability and mixing rate in an ocean margin sediment (Northeast Atlantic) by diagenetic modeling. Journal of Marine Research, 1998, 56, 519-534.	0.3	36
213	Tolerance of benthic foraminifera (Protista:Sarcodina) to hydrogen sulphide. Marine Ecology - Progress Series, 1998, 169, 77-86.	0.9	67
214	Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology - Progress Series, 1998, 173, 67-83.	0.9	178
215	Empirical relationships for use in global diagenetic models. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 327-344.	0.6	276
216	Nematode distribution in ocean margin sediments of the Goban Spur (northeast Atlantic) in relation to sediment geochemistry. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1671-1683.	0.6	52

#	Article	IF	CITATIONS
217	Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. Journal of Sea Research, 1997, 38, 59-70.	0.6	103
218	Monitoring meiobenthos using cm-, m- and km-scales in the Southern Bight of the North Sea. Marine Environmental Research, 1997, 43, 265-278.	1.1	42
219	Differential response of benthic meiofauna to anoxia with special reference to Foraminifera (Protista:Sarcodina). Marine Ecology - Progress Series, 1997, 158, 151-163.	0.9	163
220	A model of nematode dynamics in the Westerschelde Estuary. Ecological Modelling, 1996, 90, 271-284.	1.2	12
221	A model of early diagenetic processes from the shelf to abyssal depths. Geochimica Et Cosmochimica Acta, 1996, 60, 1019-1040.	1.6	387
222	Denitrification in marine sediments: A model study. Global Biogeochemical Cycles, 1996, 10, 661-673.	1.9	327
223	Modeling ²¹⁰ Pb-derived mixing activity in ocean margin sediments: Diffusive versus nonlocal mixing. Journal of Marine Research, 1996, 54, 1207-1227.	0.3	114
224	Reply to the comment by Nielsen et al Limnology and Oceanography, 1996, 41, 1846-1847.	1.6	5
225	Twentyfive years of changes in the distribution and biomass of eelgrass, Zostera marina, in Grevelingen lagoon, The Netherlands. Netherlands Journal of Aquatic Ecology, 1996, 30, 107-117.	0.3	11
226	Evaluation of the nitrogen isotopeâ€pairing method for measuring benthic denitrification: A simulation analysis. Limnology and Oceanography, 1996, 41, 1839-1844.	1.6	39
227	Dynamic response of deepâ€sea sediments to seasonal variations: A model. Limnology and Oceanography, 1996, 41, 1651-1668.	1.6	124
228	Wax and wane of eelgrass Zostera marina and water column silicon levels. Marine Ecology - Progress Series, 1996, 144, 303-307.	0.9	16
229	Subsurface activity of benthic foraminifera. Marine Ecology - Progress Series, 1996, 145, 303-304.	0.9	3
230	Major biological processes in European tidal estuaries: a synthesis of the JEEP-92 Project. Hydrobiologia, 1995, 311, 1-7.	1.0	36
231	Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia, 1995, 311, 215-224.	1.0	69
232	Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES. Hydrobiologia, 1995, 311, 225-246.	1.0	99
233	Carbon flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES). Hydrobiologia, 1995, 311, 247-266.	1.0	81
234	Comparison of the linear Van den Berg/Ružić transformation and a non-linear fit of the Langmuir isotherm applied to Cu speciation data in the estuarine environment. Marine Chemistry, 1995, 48, 131-142.	0.9	147

#	Article	IF	CITATIONS
235	Seed Dispersal of Halophytes in Tidal Salt Marshes. Journal of Ecology, 1995, 83, 559.	1.9	133
236	Major biological processes in European tidal estuaries: a synthesis of the JEEP-92 Project., 1995,, 1-7.		3
237	Estimating estuarine residence times in the Westerschelde (The Netherlands) using a box model with fixed dispersion coefficients., 1995,, 215-224.		10
238	Nitrogen dynamics in the Westerschelde estuary (SW Netherlands) estimated by means of the ecosystem model MOSES., 1995,, 225-246.		8
239	Carbon Flows in the Westerschelde estuary (The Netherlands) evaluated by means of an ecosystem model (MOSES)., 1995,, 247-266.		6
240	Seasonal changes in environmental variables, biomass, production and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia, 1994, 99, 45-59.	0.9	131
241	A new trend in the development of the phytoplankton in the Oosterschelde (SW Netherlands) during and after the construction of a storm-surge barrier. Hydrobiologia, 1994, 282-283, 79-100.	1.0	38
242	Plankton size distributions and trophic relations before and after the construction of the storm-surge barrier in the Oosterschelde estuary. Hydrobiologia, 1994, 282-283, 145-152.	1.0	14
243	The response of salt marsh vegetation to tidal reduction caused by the Oosterschelde storm-surge barrier. Hydrobiologia, 1994, 282-283, 335-353.	1.0	31
244	Theme VI: The analysis of a dynamic simulation model for the Oosterschelde ecosystem — a summary. Hydrobiologia, 1994, 282-283, 431-436.	1.0	1
245	SMOES: a simulation model for the Oosterschelde ecosystem. Hydrobiologia, 1994, 282-283, 437-451.	1.0	49
246	Living in the twilight: estimating net phytoplankton growth in the Westerschelde estuary (The) Tj ETQq0 0 0 rgBT 1277-1301.	/Overlock 0.8	10 Tf 50 30 74
247	The response of salt marsh vegetation to tidal reduction caused by the Oosterschelde storm-surge barrier., 1994,, 335-353.		8
248	One foot in the grave: zooplankton drift into the Westerschelde estuary (The Netherlands). Marine Ecology - Progress Series, 1994, 105, 19-29.	0.9	32
249	Population dynamics of Diplolaimelloides bruciei, a nematode associated with the salt marsh plant Spartina anglica. Marine Ecology - Progress Series, 1994, 105, 277-284.	0.9	16
250	The analysis of a dynamic simulation model for the Oosterschelde ecosystem — a summary. , 1994, , 431-436.		1
251	The meiobenthos of the North Sea: density, biomass trends and distribution of copepod communities. ICES Journal of Marine Science, 1992, 49, 23-44.	1.2	37
252	The benthic infauna of the North Sea: species distribution and assemblages. ICES Journal of Marine Science, 1992, 49, 127-143.	1.2	144

#	Article	IF	CITATIONS
253	Trends in biomass, density and diversity of North Sea macrofauna. ICES Journal of Marine Science, 1992, 49, 13-22.	1.2	103
254	Vegetation response to experimental and natural disturbance in two salt-marsh plant communities in the southwest Netherlands. Journal of Sea Research, 1992, 30, 279-288.	1.0	18
255	The Influence of Photoperiodicity on Hatching of (i>Sepia Officinalis (li>). Journal of the Marine Biological Association of the United Kingdom, 1991, 71, 665-678.	0.4	24
256	The impact of photoperiodicity on hatching of Loligo vulgaris and Loligo forbesi. Journal of the Marine Biological Association of the United Kingdom, 1990, 70, 597-610.	0.4	20
257	Composition, distribution, biomass and production of North Sea meiofauna. Journal of Sea Research, 1990, 26, 333-342.	1.0	55
258	Changes in seasonal succession of phytoplankton induced by the storm-surge barrier in the Oosterschelde (S.W. Netherlands). Journal of Plankton Research, 1990, 12, 947-972.	0.8	69
259	Studies of the life-history and energetics of marine and brackish-water nematodes. Oecologia, 1988, 77, 457-463.	0.9	45
260	Studies of the life-history and energetics of marine and brackish-water nematodes. Oecologia, 1988, 77, 296-301.	0.9	43
261	On the use of meiofauna in ecological monitoring: Who needs taxonomy?. Marine Pollution Bulletin, 1988, 19, 665-668.	2.3	76
262	Analysis of community attributes of the benthic meiofauna of Frierfjord/Langesundfjord. Marine Ecology - Progress Series, 1988, 46, 171-180.	0.9	115
263	The predictability of biological populations and communities: an example from the meiobenthos. , 1987, , 281-290.		1
264	A re-evaluation of marine nematode productivity. Hydrobiologia, 1986, 135, 193-196.	1.0	30
265	The predictability of biological populations and communities: an example from the meiobenthos. Hydrobiologia, 1986, 142, 281-290.	1.0	3
266	Secondary production of an intertidal mussel (Mytilus edulis L.) population in the Eastern Scheldt (S.W. Netherlands). Hydrobiologia, 1986, 133, 107-115.	1.0	33
267	Secondary production of the harpacticoid copepod <i>Paronychocamptus nanus</i> in a brackishâ€water habitat. Limnology and Oceanography, 1985, 30, 1060-1066.	1.6	10
268	Measurement of the adenylate energy charge in Nereis diversicolor and Nephtys sp. (Polychaeta:) Tj ETQq0 0 0 rg	şΒŢ.!Overlo	ock_10 Tf 50
269	Problems in meiofauna energy-flow studies. Hydrobiologia, 1984, 118, 21-28.	1.0	20
270	Production of Tachidius discipes (Copepoda. Harpacticoida). Marine Ecology - Progress Series, 1984, 17, 271-278.	0.9	13

#	Article	IF	CITATIONS
271	The production of Cyprideis torosa Jones 1850 (Crustacea, Ostracoda). Oecologia, 1983, 58, 326-331.	0.9	30
272	The respiration of five brackish-water harpacticoid copepod species. Journal of Experimental Marine Biology and Ecology, 1983, 71, 249-256.	0.7	16
273	Growth and respiration of Cyprideis torosa Jones 1850 (Crustacea Ostracoda). Oecologia, 1982, 54, 300-303.	0.9	36
274	Timing recovery of ecosystems in sequential remotely sensed and simulated data. Protocol Exchange, 0, , .	0.3	2