
Eric Boué-Grabot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228573/publications.pdf Version: 2024-02-01

EDIC BOLLÃ O-CRABOT

#	Article	IF	CITATIONS
1	Increased surface P2X4 receptors by mutant SOD1 proteins contribute to ALS pathogenesis in SOD1-G93A mice. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8
2	Animal models of pain: Diversity and benefits. Journal of Neuroscience Methods, 2021, 348, 108997.	1.3	57
3	Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Molecular Psychiatry, 2021, 26, 629-644.	4.1	32
4	P2X7 Receptors and TMEM16 Channels Are Functionally Coupled with Implications for Macropore Formation and Current Facilitation. International Journal of Molecular Sciences, 2021, 22, 6542.	1.8	10
5	The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos. Communications Biology, 2021, 4, 1158.	2.0	0
6	Role of Conserved Residues and F322 in the Extracellular Vestibule of the Rat P2X7 Receptor in Its Expression, Function and Dye Uptake Ability. International Journal of Molecular Sciences, 2020, 21, 8446.	1.8	4
7	Implication of Neuronal Versus Microglial P2X4 Receptors in Central Nervous System Disorders. Neuroscience Bulletin, 2020, 36, 1327-1343.	1.5	25
8	Editorial: Purinergic Signaling in Health and Disease. Frontiers in Cellular Neuroscience, 2020, 14, 15.	1.8	3
9	P2X Electrophysiology and Surface Trafficking in Xenopus Oocytes. Methods in Molecular Biology, 2020, 2041, 243-259.	0.4	2
10	Cross-Talk between P2X and NMDA Receptors. International Journal of Molecular Sciences, 2020, 21, 7187.	1.8	15
11	Comparative Embryonic Spatio-Temporal Expression Profile Map of the Xenopus P2X Receptor Family. Frontiers in Cellular Neuroscience, 2019, 13, 340.	1.8	9
12	Aquaporin-4 Surface Trafficking Regulates Astrocytic Process Motility and Synaptic Activity in Health and Autoimmune Disease. Cell Reports, 2019, 27, 3860-3872.e4.	2.9	43
13	GAT-3 Dysfunction Generates Tonic Inhibition in External Globus Pallidus Neurons in Parkinsonian Rodents. Cell Reports, 2018, 23, 1678-1690.	2.9	39
14	Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors. Neural Plasticity, 2017, 2017, 1-11.	1.0	62
15	Selective Inactivation of Striatal FosB/ΔFosB-Expressing Neurons Alleviates L-DOPA–Induced Dyskinesia. Biological Psychiatry, 2016, 79, 354-361.	0.7	68
16	P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons. Scientific Reports, 2016, 6, 31836.	1.6	24
17	Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Science Translational Medicine, 2016, 8, 366ra162.	5.8	139
18	A New Mechanism of Receptor Targeting by Interaction between Two Classes of Ligand-Gated Ion Channels. Journal of Neuroscience, 2016, 36, 1456-1470.	1.7	15

Eric Boué-Grabot

#	Article	IF	CITATIONS
19	Long distance effect on ligand-gated ion channels extracellular domain may affect interactions with the intracellular machinery. Communicative and Integrative Biology, 2014, 7, e27984.	0.6	2
20	ATP P2X Receptors Downregulate AMPA Receptor Trafficking and Postsynaptic Efficacy in Hippocampal Neurons. Neuron, 2014, 83, 417-430.	3.8	91
21	Inhibition of P2X4 function by P2Y6 UDP receptors in microglia. Clia, 2013, 61, 2038-2049.	2.5	33
22	Agonist-dependent Endocytosis of γ-Aminobutyric Acid Type A (GABAA) Receptors Revealed by a γ2(R43Q) Epilepsy Mutation. Journal of Biological Chemistry, 2013, 288, 28254-28265.	1.6	30
23	A Dual Polybasic Motif Determines Phosphoinositide Binding and Regulation in the P2X Channel Family. PLoS ONE, 2012, 7, e40595.	1.1	18
24	P2X4 receptor channels form large noncytolytic pores in resting and activated microglia. Glia, 2012, 60, 728-737.	2.5	48
25	PSD-95 expression controls l-DOPA dyskinesia through dopamine D1 receptor trafficking. Journal of Clinical Investigation, 2012, 122, 3977-3989.	3.9	110
26	Interplay between ionotropic receptors modulates inhibitory synaptic strength. Communicative and Integrative Biology, 2011, 4, 706-709.	0.6	6
27	Cross-talk between P2X4 and γ-Aminobutyric Acid, Type A Receptors Determines Synaptic Efficacy at a Central Synapse. Journal of Biological Chemistry, 2011, 286, 19993-20004.	1.6	53
28	Selective potentiation of homomeric P2X2 ionotropic ATP receptors by a fast non-genomic action of progesterone. Neuropharmacology, 2010, 58, 569-577.	2.0	22
29	Inhibitory Transmission in Locus Coeruleus Neurons Expressing GABAA Receptor Epsilon Subunit Has a Number of Unique Properties. Journal of Neurophysiology, 2009, 102, 2312-2325.	0.9	26
30	Phosphoinositides Regulate P2X ₄ ATP-Gated Channels through Direct Interactions. Journal of Neuroscience, 2008, 28, 12938-12945.	1.7	78
31	A γ2(R43Q) Mutation, Linked to Epilepsy in Humans, Alters GABAA Receptor Assembly and Modifies Subunit Composition on the Cell Surface. Journal of Biological Chemistry, 2007, 282, 3819-3828.	1.6	55
32	An intracellular motif of P2X3receptors is required for functional cross-talk with GABAAreceptors in nociceptive DRG neurons. Journal of Neurochemistry, 2007, 102, 1357-1368.	2.1	44
33	Functional Properties of Internalization-Deficient P2X4 Receptors Reveal a Novel Mechanism of Ligand-Gated Channel Facilitation by Ivermectin. Molecular Pharmacology, 2006, 69, 576-587.	1.0	71
34	Subunit-specific Coupling between γ-Aminobutyric Acid Type A and P2X2 Receptor Channels. Journal of Biological Chemistry, 2004, 279, 52517-52525.	1.6	71
35	Selective Knock-Down of P2X7ATP Receptor Function by Dominant-Negative Subunits. Molecular Pharmacology, 2004, 65, 646-654.	1.0	7
36	Cross-talk and Co-trafficking between ï।/GABA Receptors and ATP-gated Channels. Journal of Biological Chemistry, 2004, 279, 6967-6975.	1.6	54

Eric Boué-Grabot

#	Article	IF	CITATIONS
37	Intracellular Cross Talk and Physical Interaction between Two Classes of Neurotransmitter-Gated Channels. Journal of Neuroscience, 2003, 23, 1246-1253.	1.7	79
38	Unique Functional Properties of a Sensory Neuronal P2X ATP-Gated Channel from Zebrafish. Journal of Neurochemistry, 2002, 75, 1600-1607.	2.1	40
39	A Protein Kinase C Site Highly Conserved in P2X Subunits Controls the Desensitization Kinetics of P2X2 ATP-gated Channels. Journal of Biological Chemistry, 2000, 275, 10190-10195.	1.6	155
40	Molecular and Electrophysiological Evidence for a GABACReceptor in Thyrotropin-Secreting Cells1. Endocrinology, 2000, 141, 1627-1632.	1.4	48
41	Functional and Biochemical Evidence for Heteromeric ATP-gated Channels Composed of P2X1 and P2X5Subunits. Journal of Biological Chemistry, 1999, 274, 15415-15419.	1.6	84
42	Expression of GABA Receptor ϕSubunits in Rat Brain. Journal of Neurochemistry, 1998, 70, 899-907.	2.1	131
43	Regulation of Intracellular pH in Rat Lactotrophs: Involvement of Anionic Exchangers*. Endocrinology, 1997, 138, 4191-4198.	1.4	2
44	An mRNA Encoding a Putative GABAâ€Gated Chloride Channel Is Expressed in the Human Cardiac Conduction System. Journal of Neurochemistry, 1997, 68, 1382-1389.	2.1	33
45	Processed Pseudogenes Interfere with Reverse Transcriptase-Polymerase Chain Reaction Controls. Analytical Biochemistry, 1996, 237, 157-159.	1.1	25
46	Molecular diversity of GABA-gated chloride channels in the rat anterior pituitary. Brain Research, 1995, 704, 125-129.	1.1	21
47	Molecular and Electrophysiological Evidence for a GABAC Receptor in Thyrotropin-Secreting Cells. , 0, .		18