Natalya V Fomchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228342/publications.pdf

Version: 2024-02-01

759233 752698 35 442 12 20 citations h-index g-index papers 36 36 36 255 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Case of Predominance of Alicyclobacillus tolerans in Microbial Community during Bioleaching of Pentlandite-Chalcopyrite Concentrate. Minerals (Basel, Switzerland), 2022, 12, 396.	2.0	6
2	Effect of copper/nickel ratio on the efficiency of biobeneficiation of bulk copper-nickel sulfide concentrates. Minerals Engineering, 2022, 182, 107586.	4.3	1
3	Bulk flotation followed by selective leaching with biogenic ferric iron is a promising solution for eco-friendly processing of complex sulfidic ores. Journal of Environmental Management, 2022, 318, 115587.	7.8	2
4	Biobeneficiation of bulk copper-zinc and copper-nickel concentrates at different temperatures. Minerals Engineering, 2021, 170, 107040.	4. 3	6
5	Effect of Temperature on Biobeneficiation of Bulk Copper-Nickel Concentrate with Thermoacidophilic Microbial Communities. Metals, $2021,11,1969.$	2.3	5
6	Sequential Bioleaching of Pyritic Tailings and Ferric Leaching of Nonferrous Slags as a Method for Metal Recovery from Mining and Metallurgical Wastes. Minerals (Basel, Switzerland), 2020, 10, 1097.	2.0	11
7	Analysis of Waste Quality for Two-Step Biohydrometallurgical Processing of Copper–Zinc Concentrate. Applied Biochemistry and Microbiology, 2019, 55, 48-51.	0.9	1
8	Effect of mineral composition of sulfidic polymetallic concentrates on non-ferrous metals bioleaching. Minerals Engineering, 2019, 138, 1-6.	4.3	13
9	Effect of sulfide mineral content in copper-zinc concentrates on the rate of leaching of non-ferrous metals by biogenic ferric iron. Hydrometallurgy, 2019, 185, 82-87.	4.3	11
10	Biohydrometallurgical treatment of old flotation tailings of sulfide ores containing non-nonferrous metals and gold. Minerals Engineering, 2018, 122, 267-276.	4.3	23
11	Bioregeneration of Leaching Solutions during Two-Step Processing of Copper-Zinc Concentrate. Applied Biochemistry and Microbiology, 2018, 54, 432-435.	0.9	5
12	Two-step biohydrometallurgical technology of copper-zinc concentrate processing as an opportunity to reduce negative impacts on the environment. Journal of Environmental Management, 2018, 226, 270-277.	7.8	21
13	Selective leaching of zinc from copper-zinc concentrate. Applied Biochemistry and Microbiology, 2017, 53, 73-77.	0.9	16
14	Two-step biohydrometallurgical technology for modernization of processing of sulfidic copper-zinc products. Hydrometallurgy, 2017, 174, 116-122.	4.3	19
15	The effects of bioleaching conditions on the nonferrous metals content in copper-zinc concentrate. Applied Biochemistry and Microbiology, 2017, 53, 448-452.	0.9	6
16	Chemical leaching of copper-zinc concentrate with ferric iron biosolution. Applied Biochemistry and Microbiology, 2017, 53, 715-718.	0.9	6
17	Bioprocess of oxidation of pyrite flotation tailings with acidophilic microorganisms for gold extraction. Journal of Biotechnology, 2016, 231, S38-S39.	3.8	1
18	A new concept of the biohydrometallurgical technology for gold recovery from refractory sulfide concentrates. Hydrometallurgy, 2016, 164, 78-82.	4.3	38

#	Article	IF	CITATIONS
19	Investigation of steps of ferric leaching and biooxidation at the recovery of gold from sulfide concentrate. Applied Biochemistry and Microbiology, 2015, 51, 75-82.	0.9	6
20	Two-step biooxidation for gold recovery from sulfidic concentrates. Journal of Biotechnology, 2015, 208, S47.	3.8	2
21	Obtaining of copper and nickel from metallurgical waste products with the use of acidophilic chemolithotrophic microorganisms. Applied Biochemistry and Microbiology, 2015, 51, 388-392.	0.9	2
22	Thermodynamic and XRD analysis of arsenopyrite biooxidation and enhancement of oxidation efficiency of gold-bearing concentrates. International Journal of Mineral Processing, 2014, 133, 112-118.	2.6	31
23	Bioregeneration of the pregnant leach solutions obtained during the leaching of nonferrous metals from slag waste by acidophilic microorganisms. Applied Biochemistry and Microbiology, 2014, 50, 169-172.	0.9	1
24	Leaching of nonferrous metals from copper converter slag with application of acidophilic microorganisms. Applied Biochemistry and Microbiology, 2013, 49, 562-569.	0.9	20
25	Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3. Hydrometallurgy, 2012, 119-120, 40-46.	4.3	72
26	Diversity of the communities of acidophilic chemolithotrophic microorganisms in natural and technogenic ecosystems. Microbiology, 2012, 81, 1-24.	1.2	29
27	Biohydrometallurgical technology of copper recovery from a complex copper concentrate. Applied Biochemistry and Microbiology, 2011, 47, 607-614.	0.9	12
28	Two-stage bacterial–chemical oxidation of refractory gold-bearing sulfidic concentrates. Hydrometallurgy, 2010, 101, 28-34.	4.3	39
29	Identification of the dominant bacterium of two-stage biooxidation of gold-arsenic concentrate. Microbiology, 2010, 79, 342-348.	1.2	4
30	A two-stage technology for bacterial and chemical leaching of copper-zinc raw materials by Fe3+ ions with their subsequent regeneration by chemolithotrophic bacteria. Applied Biochemistry and Microbiology, 2009, 45, 56-60.	0.9	15
31	Effect of acidic treatment of the chemical composition and bacterial oxidation of arsenic-bearing gold concentrate. Applied Biochemistry and Microbiology, 2008, 44, 507-511.	0.9	1
32	Title is missing!. Applied Biochemistry and Microbiology, 2003, 39, 82-86.	0.9	3
33	Bioprocessing of Mining and Metallurgical Wastes Containing Non-Ferrous and Precious Metals. Advanced Materials Research, 0, 825, 301-304.	0.3	8
34	Bioprocess for Leaching of Copper Concentrate. Advanced Materials Research, 0, 1130, 359-362.	0.3	6
35	Eco-Friendly Processing of Sulfidic Polymetallic Concentrates Using Biohydrometallurgy. , 0, , .		0

3