Muzamil Khatri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228184/publications.pdf

Version: 2024-02-01

516681 501174 32 896 16 28 citations h-index g-index papers 32 32 32 825 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Salts and waterâ€free dyeing of cellulose nanofibers using novel green deep eutectic solvents: Isotherm, kinetics, and thermodynamic studies. Journal of Applied Polymer Science, 2022, 139, .	2.6	13
2	Fabrication of Ceftriaxone-Loaded Cellulose Acetate and Polyvinyl Alcohol Nanofibers and Their Antibacterial Evaluation. Antibiotics, 2022, 11, 352.	3.7	10
3	Investigation of Mechanical, Chemical, and Antibacterial Properties of Electrospun Cellulose-Based Scaffolds Containing Orange Essential Oil and Silver Nanoparticles. Polymers, 2022, 14, 85.	4.5	22
4	An overview of medical textile materials. , 2022, , 3-42.		6
5	Photosensitive nanofibers for data recording and erasing. Journal of the Textile Institute, 2021, 112, 429-436.	1.9	12
6	A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydrate Polymers, 2021, 252, 117175.	10.2	80
7	Characterization and biocompatibility evaluation of artificial blood vessels prepared from pristine poly (Ethylene-glycol-co-1,4-cyclohexane dimethylene-co-isosorbide terephthalate), poly (1, 4) Tj ETQq1 1 0.78431 Materials Today Communications. 2021. 26. 102113.	.4 rgBT /O	verlock 10T 22
8	Fabrication of Poly(Ethylene-glycol 1,4-Cyclohexane Dimethylene-Isosorbide-Terephthalate) Electrospun Nanofiber Mats for Potential Infiltration of Fibroblast Cells. Polymers, 2021, 13, 1245.	4.5	16
9	Reactive Dyeing of Electrospun Cellulose Nanofibers by Pad-steam Method. Chemical Research in Chinese Universities, 2021, 37, 535-540.	2.6	3
10	Efficient removal of reactive blue-19 dye by co-electrospun nanofibers. Materials Research Express, 2021, 8, 055502.	1.6	10
11	Fabrication and characterization of electrospun zein/nylon-6 (ZN6) nanofiber membrane for hexavalent chromium removal. Environmental Science and Pollution Research, 2021, , 1.	5.3	5
12	Introducing Deep Eutectic Solvents as a Water-Free Dyeing Medium for Poly (1,4-cYclohexane) Tj ETQq0 0 0 rgBT	/Qverlock	10 Tf 50 30
13	Preparation of a Cage-Type Polyglycolic Acid/Collagen Nanofiber Blend with Improved Surface Wettability and Handling Properties for Potential Biomedical Applications. Polymers, 2021, 13, 3458.	4.5	9
14	Ultrasonic-assisted dyeing of silk fibroin nanofibers: an energy-efficient coloration at room temperature. Applied Nanoscience (Switzerland), 2020, 10, 917-930.	3.1	19
15	Zein nanofibers via deep eutectic solvent electrospinning: tunable morphology with super hydrophilic properties. Scientific Reports, 2020, 10, 15307.	3.3	46
16	An optimistic approach "from hydrophobic to super hydrophilic nanofibers―for enhanced absorption properties. Polymer Testing, 2020, 90, 106683.	4.8	16
17	Zinc oxide nanoparticles attached to polyacrylonitrile nanofibers with hinokitiol as gluing agent for synergistic antibacterial activities and effective dye removal. Journal of Industrial and Engineering Chemistry, 2020, 85, 258-268.	5.8	61
18	Fabrication and Characterization of Novel Antibacterial Ultrafine Nylon-6 Nanofibers Impregnated by Garlic Sour. Fibers and Polymers, 2020, 21, 2780-2787.	2.1	17

#	Article	IF	CITATIONS
19	Adsorptive defluoridation from aqueous solution using a novel blend of eggshell powder and chitosan nanofibers. Materials Research Express, 2020, 7, 125005.	1.6	9
20	Dyeing of Electrospun Nanofibers. , 2019, , 1-16.		4
21	Dyeing of Electrospun Nanofibers. , 2019, , 373-388.		4
22	Preparation of colored recycled polyethylene terephthalate nanofibers from waste bottles: Physicochemical studies. Advances in Polymer Technology, 2018, 37, 2820-2827.	1.7	35
23	Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chemical Engineering Research and Design, 2018, 136, 744-752.	5.6	77
24	Electrospun Zein Nanofiber as a Green and Recyclable Adsorbent for the Removal of Reactive Black 5 from the Aqueous Phase. ACS Sustainable Chemistry and Engineering, 2017, 5, 4340-4351.	6.7	76
25	Ultrasonic-assisted dyeing of Nylon-6 nanofibers. Ultrasonics Sonochemistry, 2017, 39, 34-38.	8.2	38
26	Ultrasonic-assisted deacetylation of cellulose acetate nanofibers: A rapid method to produce cellulose nanofibers. Ultrasonics Sonochemistry, 2017, 36, 319-325.	8.2	79
27	Highly efficient and robust electrospun nanofibers for selective removal of acid dye. Journal of Molecular Liquids, 2017, 244, 478-488.	4.9	32
28	Screen-printed electrospun cellulose nanofibers using reactive dyes. Cellulose, 2017, 24, 4561-4568.	4.9	9
29	Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide) Tj ETQq $1\ 1$	0,784314 7.3	l l rgBT /Over
30	Dyeing and characterization of regenerated cellulose nanofibers with vat dyes. Carbohydrate Polymers, 2017, 174, 443-449.	10.2	59
31	Ultrasonic dyeing of cellulose nanofibers. Ultrasonics Sonochemistry, 2016, 31, 350-354.	8.2	63
32	Colorimetric Sensor for Detection of Adulteration in Gasoline using Polydiacetyleneelectro-Spun Fibers. Pakistan Journal of Analytical and Environmental Chemistry, 2016, 17, .	0.5	0