Pablo Bascuñana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8228099/publications.pdf Version: 2024-02-01

ΡΑΒΙΟ ΒΛΟΟΙΑ

#	Article	IF	CITATIONS
1	Machine Learning-Supported Analyses Improve Quantitative Histological Assessments of Amyloid-β Deposits and Activated Microglia. Journal of Alzheimer's Disease, 2021, 79, 597-605.	2.6	11
2	Development of deep learning models for microglia analyses in brain tissue using DeePathologyâ"¢ STUDIO. Journal of Neuroscience Methods, 2021, 364, 109371.	2.5	14
3	99mTc-HMPAO SPECT imaging reveals brain hypoperfusion during status epilepticus. Metabolic Brain Disease, 2021, 36, 2597-2602.	2.9	5
4	Dimethyl fumarate does not mitigate cognitive decline and β-amyloidosis in female APPPS1 mice. Brain Research, 2021, 1768, 147579.	2.2	15
5	A New Tool for the Analysis of the Effect of Intracerebrally Injected Anti-Amyloid-β Compounds. Journal of Alzheimer's Disease, 2021, , 1-14.	2.6	2
6	Choice of anesthesia and data analysis method strongly increases sensitivity of 18F-FDG PET imaging during experimental epileptogenesis. PLoS ONE, 2021, 16, e0260482.	2.5	2
7	Strategies to gain novel Alzheimer's disease diagnostics and therapeutics using modulators of ABCA transporters Free Neuropathology, 2021, 2, .	3.0	9
8	Divergent metabolic substrate utilization in brain during epileptogenesis precedes chronic hypometabolism. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 204-213.	4.3	13
9	Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiology of Disease, 2020, 134, 104664.	4.4	24
10	¹¹ C-Methionine PET Identifies Astroglia Involvement in Heart–Brain Inflammation Networking After Acute Myocardial Infarction. Journal of Nuclear Medicine, 2020, 61, 977-980.	5.0	18
11	Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis. Drugs in R and D, 2020, 20, 197-207.	2.2	29
12	Detection and Prediction of Mild Cognitive Impairment in Alzheimer's Disease Mice. Journal of Alzheimer's Disease, 2020, 77, 1209-1221.	2.6	4
13	TSPO PET Identifies Different Anti-inflammatory Minocycline Treatment Response in Two Rodent Models of Epileptogenesis. Neurotherapeutics, 2020, 17, 1228-1238.	4.4	10
14	Vesicular ATP-binding cassette transporters in human disease: relevant aspects of their organization for future drug development. Future Drug Discovery, 2020, 2, .	2.1	8
15	New Tricks for an Aging Dog. Circulation: Cardiovascular Imaging, 2019, 12, e009452.	2.6	1
16	Ex vivo characterization of neuroinflammatory and neuroreceptor changes during epileptogenesis using candidate positron emission tomography biomarkers. Epilepsia, 2019, 60, 2325-2333.	5.1	9
17	Attenuation of epileptogenesis by 2-deoxy-d-glucose is accompanied by increased cerebral glucose supply, microglial activation and reduced astrocytosis. Neurobiology of Disease, 2019, 130, 104510.	4.4	10
18	PET Neuroimaging Reveals Serotonergic and Metabolic Dysfunctions in the Hippocampal Electrical Kindling Model of Epileptogenesis. Neuroscience, 2019, 409, 101-110.	2.3	7

Pablo Bascuñana

#	ARTICLE	IF	CITATIONS
19	Anesthesia and Preconditioning Induced Changes in Mouse Brain [18F] FDG Uptake and Kinetics. Molecular Imaging and Biology, 2019, 21, 1089-1096.	2.6	18
20	[¹⁸ F] <scp>GE</scp> 180 positron emission tomographic imaging indicates a potential doubleâ€hit insult in the intrahippocampal kainate mouse model of temporal lobe epilepsy. Epilepsia, 2018, 59, 617-626.	5.1	20
21	Metyrapone prevents acute glucose hypermetabolism and short-term brain damage induced by intrahippocampal administration of 4-aminopyridine in rats. Neurochemistry International, 2018, 113, 92-106.	3.8	5
22	Targeting Chemokine Receptor CXCR4 and Translocator Protein for Characterization of High-Risk Plaque in Carotid Stenosis Ex Vivo. Stroke, 2018, 49, 1988-1991.	2.0	8
23	Blood–Brain Barrier Leakage during Early Epileptogenesis Is Associated with Rapid Remodeling of the Neurovascular Unit. ENeuro, 2018, 5, ENEURO.0123-18.2018.	1.9	45
24	Metyrapone prevents brain damage induced by status epilepticus in the rat lithium-pilocarpine model. Neuropharmacology, 2017, 123, 261-273.	4.1	21
25	Serial Quantitative TSPO-Targeted PET Reveals Peak Microglial Activation up to 2 Weeks After an Epileptogenic Brain Insult. Journal of Nuclear Medicine, 2016, 57, 1302-1308.	5.0	50
26	[18F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats. Molecular Imaging and Biology, 2016, 18, 733-740.	2.6	17
27	The insulinâ€like growth factor I receptor regulates glucose transport by astrocytes. Glia, 2016, 64, 1962-1971.	4.9	50
28	Isoflurane prevents acquired epilepsy in rat models of temporal lobe epilepsy. Annals of Neurology, 2016, 80, 896-908.	5.3	56
29	Serotonin Depletion Does not Modify the Short-Term Brain Hypometabolism and Hippocampal Neurodegeneration Induced by the Lithium–Pilocarpine Model of Status Epilepticus in Rats. Cellular and Molecular Neurobiology, 2016, 36, 513-519.	3.3	9
30	Subacute administration of fluoxetine prevents short-term brain hypometabolism and reduces brain damage markers induced by the lithium-pilocarpine model of epilepsy in rats. Brain Research Bulletin, 2015, 111, 36-47.	3.0	25
31	In Vivo [18F] FDG PET Imaging Reveals that p-Chloroamphetamine Neurotoxicity is Associated with Long-Term Cortical and Hippocampal Hypometabolism. Molecular Imaging and Biology, 2015, 17, 239-247.	2.6	3
32	N-(4-[18F]-fluoropyridin-2-yl)-N-{2-[4-(2-methoxyphenyl)piperazin-1-yl]ethyl}carboxamides as analogs of WAY100635. New PET tracers of serotonin 5-HT1A receptors. European Journal of Medicinal Chemistry, 2014, 85, 795-806.	5.5	6
33	Isotopeâ€labeled amyloidâ€Î² does not transmit to the brain in a prionâ€like manner after peripheral administration. EMBO Reports, 0, , .	4.5	7