Jun Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227992/publications.pdf

Version: 2024-02-01

32	2,667	18	27
papers	citations	h-index	g-index
32	32	32	4433
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Gap-mode plasmons at 2Ânm spatial-resolution under a graphene-mediated hot spot. Nano Today, 2022, 44, 101464.	11.9	8
2	Enhanced Neutral Exciton Diffusion in Monolayer WS ₂ by Exciton–Exciton Annihilation. ACS Nano, 2022, 16, 8005-8011.	14.6	11
3	Inhomogeneity of fluorescence lifetime and intensity in a plasmonic nanocavity. Nano Today, 2022, 45, 101548.	11.9	4
4	Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields. Science Advances, 2021, 7, .	10.3	43
5	Nonlinear valley phonon scattering under the strong coupling regime. Nature Materials, 2021, 20, 1210-1215.	27.5	32
6	Single-Molecule Plasmonic Optical Trapping. Matter, 2020, 3, 1350-1360.	10.0	53
7	Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy. Nature Communications, 2020, 11, 2518.	12.8	47
8	Unveiling the molecule–plasmon interactions in surface-enhanced infrared absorption spectroscopy. National Science Review, 2020, 7, 1228-1238.	9.5	17
9	Real-time detection of single-molecule reaction by plasmon-enhanced spectroscopy. Science Advances, 2020, 6, eaba6012.	10.3	41
10	Nonlinear Optics at Excited States of Exciton Polaritons in Two-Dimensional Atomic Crystals. Nano Letters, 2020, 20, 1676-1685.	9.1	20
11	Elucidating Molecule–Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2019, 58, 12133-12137.	13.8	29
12	Elucidating Molecule–Plasmon Interactions in Nanocavities with 2 nm Spatial Resolution and at the Singleâ€Molecule Level. Angewandte Chemie, 2019, 131, 12261-12265.	2.0	12
13	Probing the excited states of valley polaritons in atomic crystals. , 2019, , .		O
14	Experimental observation of chiral phonons in monolayer WSe2., 2019,,.		0
15	Observation of chiral phonons. Science, 2018, 359, 579-582.	12.6	217
16	Plasmon-Enhanced Ultrasensitive Surface Analysis Using Ag Nanoantenna. Analytical Chemistry, 2018, 90, 2018-2022.	6.5	30
17	Shell-Isolated Nanoparticle-Enhanced Phosphorescence. Analytical Chemistry, 2018, 90, 10837-10842.	6.5	17
18	From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nature Reviews Chemistry, 2018, 2, 216-230.	30.2	337

#	Article	IF	CITATIONS
19	Spectroscopic signature of chiral phonons in 2D materials. , 2018, , .		O
20	Further expanding versatility of surface-enhanced Raman spectroscopy: from non-traditional SERS-active to SERS-inactive substrates and single shell-isolated nanoparticle. Faraday Discussions, 2017, 205, 457-468.	3.2	15
21	Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nature Communications, 2017, 8, 14891.	12.8	138
22	Plasmon enhanced quantum dots fluorescence and energy conversion in water splitting using shell-isolated nanoparticles. Nano Energy, 2017, 42, 232-240.	16.0	28
23	Size Effect on SERS of Gold Nanorods Demonstrated via Single Nanoparticle Spectroscopy. Journal of Physical Chemistry C, 2016, 120, 20806-20813.	3.1	123
24	An electrochemical surfaceâ€enhanced Raman spectroscopic study on nanorodâ€structured lithium prepared by electrodeposition. Journal of Raman Spectroscopy, 2016, 47, 1017-1023.	2.5	30
25	In-situ monitoring of redox processes of viologen at Au(hkl) single-crystal electrodes using electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy. Electrochemistry Communications, 2016, 72, 131-134.	4.7	8
26	Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, $2016, 1, \ldots$	48.7	1,229
27	Intraband Hot-Electron Photoluminescence from Single Silver Nanorods. ACS Photonics, 2016, 3, 1248-1255.	6.6	66
28	Spherical Au@Ag Nanoparticles for Localized Surface Plasmon Resonance Scanning Probes: Synthesis and Dielectric Sensitivity. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 1575-1583.	4.9	0
29	Plasmonic and new plasmonic materials: general discussion. Faraday Discussions, 2015, 178, 123-149.	3.2	16
30	A theoretical and experimental approach to shell-isolated nanoparticle-enhanced Raman spectroscopy of single-crystal electrodes. Surface Science, 2015, 631, 73-80.	1.9	30
31	Electrostatic Self-Assembling Formation of Pd Superlattice Nanowires from Surfactant-Free Ultrathin Pd Nanosheets. Journal of the American Chemical Society, 2014, 136, 12856-12859.	13.7	66
32	The Effects of M ₂ O ₃ on Stabilizing Monocopper over the Surface of Cuâ€ZnOâ€M ₂ O ₃ Catalysts for Mathanol Synthesis. Journal of the Chinese Chemical Society, 1998, 45, 673-678.	1.4	0