David A Hess

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227832/publications.pdf

Version: 2024-02-01

759233 752698 20 683 12 20 h-index citations g-index papers 20 20 20 1012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Isolation and characterization of circulating pro-vascular progenitor cell subsets from human whole blood samples. STAR Protocols, 2021, 2, 100311.	1.2	5
2	Decellularized adipose tissue scaffolds guide hematopoietic differentiation and stimulate vascular regeneration in a hindlimb ischemia model. Biomaterials, 2021, 274, 120867.	11.4	12
3	Exploring the Clinical Implications of Wnt Signaling in Enucleated Erythrocytes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1654-1656.	2.4	1
4	Heal Thyself: SGLT2 Inhibition Limits Regenerative Cell Exhaustion and Heals Damaged Vessels. Diabetes, 2021, 70, 1620-1622.	0.6	3
5	Characterization of a Vimentinhigh/Nestinhigh proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells, 2020, 38, 666-682.	3.2	17
6	SGLT2 Inhibition with Empagliflozin Increases Circulating Provascular Progenitor Cells in People with Type 2 Diabetes Mellitus. Cell Metabolism, 2019, 30, 609-613.	16.2	69
7	Human Multipotent Stromal Cell Secreted Effectors Accelerate Islet Regeneration. Stem Cells, 2019, 37, 516-528.	3.2	6
8	Circulating Pro-Vascular Progenitor CellÂDepletion During Type 2 Diabetes. JACC Basic To Translational Science, 2019, 4, 98-112.	4.1	21
9	Vascular Organoids: Are We Entering a New Area of Cardiometabolic Research?. Cell Metabolism, 2019, 29, 792-794.	16.2	2
10	Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function. Stem Cells, 2018, 36, 723-736.	3,2	14
11	Concise Review: Cell Therapy for Critical Limb Ischemia: An Integrated Review of Preclinical and Clinical Studies. Stem Cells, 2018, 36, 161-171.	3.2	154
12	Role of Endothelium in Doxorubicin-Induced Cardiomyopathy. JACC Basic To Translational Science, 2018, 3, 861-870.	4.1	98
13	Expansion of Umbilical Cord Blood Aldehyde Dehydrogenase Expressing Cells Generates Myeloid Progenitor Cells that Stimulate Limb Revascularization. Stem Cells Translational Medicine, 2017, 6, 1607-1619.	3.3	15
14	High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential. Stem Cells, 2017, 35, 1542-1553.	3.2	52
15	Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation. Diabetologia, 2017, 60, 1987-1998.	6.3	26
16	Comparison of sample preparation techniques for largeâ€scale proteomics. Proteomics, 2017, 17, 1600337.	2.2	34
17	Expanded Hematopoietic Progenitor Cells Reselected for High Aldehyde Dehydrogenase Activity Demonstrate Islet Regenerative Functions. Stem Cells, 2016, 34, 873-887.	3.2	9
18	Umbilical Cord Bloodâ€Derived Aldehyde Dehydrogenaseâ€Expressing Progenitor Cells Promote Recovery from Acute Ischemic Injury. Stem Cells, 2012, 30, 2248-2260.	3.2	46

DAVID A HESS

#	Article	IF	CITATIONS
19	Intrapancreatic delivery of human umbilical cord blood aldehyde dehydrogenase-producing cells promotes islet regeneration. Diabetologia, 2012, 55, 1755-1760.	6.3	22
20	Widespread Nonhematopoietic Tissue Distribution by Transplanted Human Progenitor Cells with High Aldehyde Dehydrogenase Activity. Stem Cells, 2008, 26, 611-620.	3.2	77