Peter J Stuckey

List of Publications by Citations

Source: https://exaly.com/author-pdf/8227716/peter-j-stuckey-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,819 25 234 54 h-index g-index citations papers 240 4,333 1.3 5.54 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
234	MUSTANG: a multiple structural alignment algorithm. <i>Proteins: Structure, Function and Bioinformatics</i> , 2006 , 64, 559-74	4.2	527
233	Programming with Constraints 1998,		385
232	MiniZinc: Towards a Standard CP Modelling Language 2007 , 529-543		278
231	Propagation via lazy clause generation. <i>Constraints</i> , 2009 , 14, 357-391	0.3	125
230	Automatic generation of protein structure cartoons with Pro-origami. <i>Bioinformatics</i> , 2011 , 27, 3315-6	7.2	124
229	The semantics of constraint logic programs1Note that reviewing of this paper was handled by the Editor-in-Chief.1. <i>The Journal of Logic Programming</i> , 1998 , 37, 1-46		109
228	The Design of the Zinc Modelling Language. <i>Constraints</i> , 2008 , 13, 229-267	0.3	85
227	Efficient constraint propagation engines. <i>ACM Transactions on Programming Languages and Systems</i> , 2008 , 31, 1-43	1.6	64
226	Explaining the cumulative propagator. <i>Constraints</i> , 2011 , 16, 250-282	0.3	57
225	Incremental analysis of constraint logic programs. <i>ACM Transactions on Programming Languages and Systems</i> , 2000 , 22, 187-223	1.6	56
224	The Refined Operational Semantics of Constraint Handling Rules. <i>Lecture Notes in Computer Science</i> , 2004 , 90-104	0.9	54
223	Solving linear arithmetic constraints for user interface applications 1997,		49
222	Understanding functional dependencies via constraint handling rules. <i>Journal of Functional Programming</i> , 2007 , 17, 83-129	1.6	47
221	Lazy Clause Generation Reengineered. Lecture Notes in Computer Science, 2009, 352-366	0.9	47
220	Fast Node Overlap Removal. <i>Lecture Notes in Computer Science</i> , 2006 , 153-164	0.9	45
219	The MiniZinc Challenge 2008 2 013. <i>AI Magazine</i> , 2014 , 35, 55-60	6.1	43
218	Solving RCPSP/max by lazy clause generation. <i>Journal of Scheduling</i> , 2013 , 16, 273-289	1.6	42

217	Beyond finite domains. Lecture Notes in Computer Science, 1994 , 86-94	0.9	41
216	MUSTANG-MR structural sieving server: applications in protein structural analysis and crystallography. <i>PLoS ONE</i> , 2010 , 5, e10048	3.7	40
215	Constraint cascading style sheets for the Web 1999 ,		40
214	Exploration of networks using overview+detail with constraint-based cooperative layout. <i>IEEE Transactions on Visualization and Computer Graphics</i> , 2008 , 14, 1293-300	4	38
213	Interactive type debugging in Haskell 2003 ,		37
212	Fast and accurate protein substructure searching with simulated annealing and GPUs. <i>BMC Bioinformatics</i> , 2010 , 11, 446	3.6	33
211	Why Cumulative Decomposition Is Not as Bad as It Sounds. Lecture Notes in Computer Science, 2009, 74	6 <i>7</i> . 6 1	32
210	Short-term planning for open pit mines: a review. <i>International Journal of Mining, Reclamation and Environment</i> , 2019 , 33, 318-339	2.2	32
209	Monadic constraint programming. Journal of Functional Programming, 2009, 19, 663-697	1.6	25
208	Structural search and retrieval using a tableau representation of protein folding patterns. <i>Bioinformatics</i> , 2008 , 24, 645-51	7.2	25
207	Lock-free parallel dynamic programming. Journal of Parallel and Distributed Computing, 2010, 70, 839-8	3 48 .4	23
206	Encodings of the Sequence Constraint 2007 , 210-224		22
205	Propagation = Lazy Clause Generation 2007 , 544-558		22
204	Solving Talent Scheduling with Dynamic Programming. INFORMS Journal on Computing, 2011, 23, 120-1	3 7 .4	21
203	Dynamic Programming to Minimize the Maximum Number of Open Stacks. <i>INFORMS Journal on Computing</i> , 2007 , 19, 607-617	2.4	21
202	Removing Node Overlapping in Graph Layout Using Constrained Optimization. <i>Constraints</i> , 2003 , 8, 143	B- \$71	21
201	An Overview of HAL. <i>Lecture Notes in Computer Science</i> , 1999 , 174-188	0.9	20
200	Minimum Cardinality Matrix Decomposition into Consecutive-Ones Matrices: CP and IP Approaches. <i>Lecture Notes in Computer Science</i> , 2007 , 1-15	0.9	20

199	Synthesizing Optimal Switching Lattices. <i>ACM Transactions on Design Automation of Electronic Systems</i> , 2014 , 20, 1-14	1.5	19
198	Improving type error diagnosis 2004 ,		19
197	Improving Linear Constraint Propagation by Changing Constraint Representation. <i>Constraints</i> , 2003 , 8, 173-207	0.3	19
196	Logic programming with satisfiability. <i>Theory and Practice of Logic Programming</i> , 2008 , 8, 121-128	0.8	18
195	Maximising the Net Present Value for Resource-Constrained Project Scheduling. <i>Lecture Notes in Computer Science</i> , 2012 , 362-378	0.9	18
194	Explaining Time-Table-Edge-Finding Propagation for the Cumulative Resource Constraint. <i>Lecture Notes in Computer Science</i> , 2013 , 234-250	0.9	18
193	Mixed-integer linear programming and constraint programming formulations for solving resource availability cost problems. <i>European Journal of Operational Research</i> , 2018 , 266, 472-486	5.6	17
192	Search combinators. <i>Constraints</i> , 2013 , 18, 269-305	0.3	17
191	Incremental Satisfiability and Implication for UTVPI Constraints. <i>INFORMS Journal on Computing</i> , 2010 , 22, 514-527	2.4	16
190	Philosophy of the MiniZinc challenge. <i>Constraints</i> , 2010 , 15, 307-316	0.3	16
189	A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods. <i>Management Science</i> , 2016 , 62, 3059-3084	3.9	15
188	Dantzig-Wolfe decomposition and branch-and-price solving in G12. <i>Constraints</i> , 2011 , 16, 77-99	0.3	15
187	Optimizing compilation of constraint handling rules in HAL. <i>Theory and Practice of Logic Programming</i> , 2005 , 5, 503-531	0.8	15
186	Efficient Intelligent Backtracking Using Linear Programming. <i>INFORMS Journal on Computing</i> , 2002 , 14, 373-386	2.4	15
185	Context-Sensitive Dynamic Partial Order Reduction. <i>Lecture Notes in Computer Science</i> , 2017 , 526-543	0.9	15
184	Half Reification and Flattening. Lecture Notes in Computer Science, 2011, 286-301	0.9	15
183	Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code. <i>Lecture Notes in Computer Science</i> , 2012 , 115-130	0.9	15
182	Searching with Consistent Prioritization for Multi-Agent Path Finding. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> , 2019 , 33, 7643-7650	5	15

(2021-2017)

181	Short-term scheduling of an open-pit mine with multiple objectives. <i>Engineering Optimization</i> , 2017 , 49, 777-795	2	14	
180	MIRAGAAa methodology for finding coordinated effects of microRNA expression changes and genome aberrations in cancer. <i>Bioinformatics</i> , 2010 , 26, 161-7	7.2	14	
179	Improved Linearization of Constraint Programming Models. <i>Lecture Notes in Computer Science</i> , 2016 , 49-65	0.9	14	
178	Using constraint programming for solving RCPSP/max-cal. <i>Constraints</i> , 2017 , 22, 432-462	0.3	13	
177	Explaining circuit propagation. <i>Constraints</i> , 2014 , 19, 1-29	0.3	13	
176	Minimizing the Maximum Number of Open Stacks by Customer Search. <i>Lecture Notes in Computer Science</i> , 2009 , 242-257	0.9	13	
175	Incremental Linear Constraint Solving and Detection of Implicit Equalities. <i>ORSA Journal on Computing</i> , 1991 , 3, 269-274		13	
174	Orthogonal Connector Routing. Lecture Notes in Computer Science, 2010 , 219-231	0.9	13	
173	Combining String Abstract Domains for JavaScript Analysis: An Evaluation. <i>Lecture Notes in Computer Science</i> , 2017 , 41-57	0.9	13	
172	The G12 Project: Mapping Solver Independent Models to Efficient Solutions. <i>Lecture Notes in Computer Science</i> , 2005 , 9-13	0.9	13	
171	Incremental Connector Routing. Lecture Notes in Computer Science, 2006, 446-457	0.9	13	
170	Core-Boosted Linear Search for Incomplete MaxSAT. Lecture Notes in Computer Science, 2019, 39-56	0.9	12	
169	Horn clauses as an intermediate representation for program analysis and transformation*. <i>Theory and Practice of Logic Programming</i> , 2015 , 15, 526-542	0.8	12	
168	A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines. <i>INFORMS Journal on Computing</i> , 2014 , 26, 658-676	2.4	12	
167	MDD propagators with explanation. <i>Constraints</i> , 2011 , 16, 407-429	0.3	12	
166	Projecting CLPR constraints. New Generation Computing, 1993, 11, 449-469	0.9	12	
165	MiniZinc with Functions. Lecture Notes in Computer Science, 2013, 268-283	0.9	12	
164	Integrated Task Assignment and Path Planning for Capacitated Multi-Agent Pickup and Delivery. IEEE Robotics and Automation Letters, 2021, 1-1	4.2	12	

163	ACD Term Rewriting. Lecture Notes in Computer Science, 2006, 117-131	0.9	12
162	A Model for Inter-module Analysis and Optimizing Compilation. <i>Lecture Notes in Computer Science</i> , 2001 , 86-102	0.9	12
161	Discovery and analysis of consistent active sub-networks in cancers. <i>BMC Bioinformatics</i> , 2013 , 14 Suppl 2, S7	3.6	11
160	CP and IP approaches to cancer radiotherapy delivery optimization. <i>Constraints</i> , 2011 , 16, 173-194	0.3	11
159	Tableau-based protein substructure search using quadratic programming. <i>BMC Bioinformatics</i> , 2009 , 10, 153	3.6	11
158	MiniSearch: A Solver-Independent Meta-Search Language for MiniZinc. <i>Lecture Notes in Computer Science</i> , 2015 , 376-392	0.9	11
157	Optimal Carpet Cutting. Lecture Notes in Computer Science, 2011, 69-84	0.9	11
156	Optimal Sankey Diagrams Via Integer Programming 2018 ,		10
155	The future of optimization technology. <i>Constraints</i> , 2014 , 19, 126-138	0.3	10
154	HM(X) type inference is CLP(X) solving. <i>Journal of Functional Programming</i> , 2008 , 18,	1.6	10
153	Conflict Directed Lazy Decomposition. Lecture Notes in Computer Science, 2012, 70-85	0.9	10
152	Scheduling Optional Tasks with Explanation. Lecture Notes in Computer Science, 2013, 628-644	0.9	10
151	IMPROVING EVOLUTIONARY ALGORITHMS FOR EFFICIENT CONSTRAINT SATISFACTION. International Journal on Artificial Intelligence Tools, 1999 , 08, 363-383	0.9	9
150	Sequential Time Splitting and Bounds Communication for a Portfolio of Optimization Solvers. <i>Lecture Notes in Computer Science</i> , 2014 , 108-124	0.9	9
149	Encoding Linear Constraints into SAT. Lecture Notes in Computer Science, 2014, 75-91	0.9	9
148	Learning Value Heuristics for Constraint Programming. Lecture Notes in Computer Science, 2015, 108-1.	230.9	9
147	Optimal k-Level Planarization and Crossing Minimization. <i>Lecture Notes in Computer Science</i> , 2011 , 238	-249)	9
146	Unbounded Model-Checking with Interpolation for Regular Language Constraints. <i>Lecture Notes in Computer Science</i> , 2013 , 277-291	0.9	9

(2012-2013)

145	Abstract Interpretation over Non-lattice Abstract Domains. <i>Lecture Notes in Computer Science</i> , 2013 , 6-24	0.9	9
144	Logistics optimization for a coal supply chain. <i>Journal of Heuristics</i> , 2020 , 26, 269-300	1.9	8
143	Statistical inference of protein structural alignments using information and compression. <i>Bioinformatics</i> , 2017 , 33, 1005-1013	7.2	7
142	Interval Analysis and Machine Arithmetic. <i>ACM Transactions on Programming Languages and Systems</i> , 2015 , 37, 1-35	1.6	7
141	A Lagrangian Relaxation Based Forward-Backward Improvement Heuristic for Maximising the Net Present Value of Resource-Constrained Projects. <i>Lecture Notes in Computer Science</i> , 2013 , 340-346	0.9	7
140	Automating branch-and-bound for dynamic programs 2008,		7
139	Optimizing compilation of CLP(R). <i>ACM Transactions on Programming Languages and Systems</i> , 1998 , 20, 1223-1250	1.6	7
138	Fast Node Overlap Removal©orrection 2006 , 446-447		7
137	Boolean Constraints for Binding-Time Analysis. Lecture Notes in Computer Science, 2001, 39-62	0.9	7
426			
136	From High-Level Model to Branch-and-Price Solution in G12 2008 , 218-232		7
135	From High-Level Model to Branch-and-Price Solution in G12 2008 , 218-232 Flexible, Rule-Based Constraint Model Linearisation 2008 , 68-83		7
		0.9	
135	Flexible, Rule-Based Constraint Model Linearisation 2008 , 68-83 The Proper Treatment of Undefinedness in Constraint Languages. <i>Lecture Notes in Computer</i>	0.9	7
135	Flexible, Rule-Based Constraint Model Linearisation 2008 , 68-83 The Proper Treatment of Undefinedness in Constraint Languages. <i>Lecture Notes in Computer Science</i> , 2009 , 367-382 The G12 Project: Mapping Solver Independent Models to Efficient Solutions. <i>Lecture Notes in</i>		7
135 134 133	Flexible, Rule-Based Constraint Model Linearisation 2008 , 68-83 The Proper Treatment of Undefinedness in Constraint Languages. <i>Lecture Notes in Computer Science</i> , 2009 , 367-382 The G12 Project: Mapping Solver Independent Models to Efficient Solutions. <i>Lecture Notes in Computer Science</i> , 2005 , 13-16	0.9	7 7 7
135 134 133	Flexible, Rule-Based Constraint Model Linearisation 2008, 68-83 The Proper Treatment of Undefinedness in Constraint Languages. Lecture Notes in Computer Science, 2009, 367-382 The G12 Project: Mapping Solver Independent Models to Efficient Solutions. Lecture Notes in Computer Science, 2005, 13-16 A Framework for Analysis of Typed Logic Programs. Lecture Notes in Computer Science, 2001, 296-310	0.9	7 7 7
135 134 133 132	Flexible, Rule-Based Constraint Model Linearisation 2008, 68-83 The Proper Treatment of Undefinedness in Constraint Languages. Lecture Notes in Computer Science, 2009, 367-382 The G12 Project: Mapping Solver Independent Models to Efficient Solutions. Lecture Notes in Computer Science, 2005, 13-16 A Framework for Analysis of Typed Logic Programs. Lecture Notes in Computer Science, 2001, 296-310 To the Gates of HAL: A HAL Tutorial. Lecture Notes in Computer Science, 2002, 47-66	0.9	7 7 7 7

127	Global difference constraint propagation for finite domain solvers 2008,		6
126	The island confinement method for reducing search space in local search methods. <i>Journal of Heuristics</i> , 2007 , 13, 557-585	1.9	6
125	Symmetry-Breaking Constraints for Grid-Based Multi-Agent Path Finding. <i>Proceedings of the AAAI Conference on Artificial Intelligence</i> ,33, 6087-6095	5	6
124	Ballot-Polling Risk Limiting Audits for IRV Elections. <i>Lecture Notes in Computer Science</i> , 2018 , 17-34	0.9	6
123	Local Search for a Cargo Assembly Planning Problem. Lecture Notes in Computer Science, 2014, 159-175	0.9	6
122	Modeling and Solving Project Scheduling with Calendars. Lecture Notes in Computer Science, 2015 , 262-2	2789	6
121	A Novel Approach to String Constraint Solving. Lecture Notes in Computer Science, 2017, 3-20	0.9	6
120	Optimizing Compilation of CHR with Rule Priorities. Lecture Notes in Computer Science, 2008, 32-47	0.9	6
119	Cadmium: An Implementation of ACD Term Rewriting. Lecture Notes in Computer Science, 2008, 531-545	50.9	6
118	Reducing Chaos in SAT-Like Search: Finding Solutions Close to a Given One. <i>Lecture Notes in Computer Science</i> , 2011 , 273-286	0.9	6
117	Boolean Equi-propagation for Optimized SAT Encoding. Lecture Notes in Computer Science, 2011, 621-63	3 6 .9	6
116	Search Combinators. Lecture Notes in Computer Science, 2011 , 774-788	0.9	6
115	Explaining Flow-Based Propagation. Lecture Notes in Computer Science, 2012, 146-162	0.9	6
114	Explaining Propagators for Edge-Valued Decision Diagrams. <i>Lecture Notes in Computer Science</i> , 2013 , 340-355	0.9	6
113	On CNF Encodings of Decision Diagrams. Lecture Notes in Computer Science, 2016, 1-17	0.9	6
112	An iterative approach to precondition inference using constrained Horn clauses. <i>Theory and Practice of Logic Programming</i> , 2018 , 18, 553-570	0.8	6
111	Symmetries, almost symmetries, and lazy clause generation. <i>Constraints</i> , 2014 , 19, 434-462	0.3	5
110	A Declarative Approach to Constrained Community Detection. <i>Lecture Notes in Computer Science</i> , 2017 , 477-494	0.9	5

109	Maximising the Net Present Value of Large Resource-Constrained Projects. <i>Lecture Notes in Computer Science</i> , 2012 , 767-781	0.9	5
108	Stable model semantics for founded bounds. <i>Theory and Practice of Logic Programming</i> , 2013 , 13, 517-5.	32 .8	5
107	Constraint Logic Programming. Foundations of Artificial Intelligence, 2006, 409-452		5
106	Branch-and-Cut-and-Price for Multi-Agent Pathfinding 2019 ,		5
105	Computing the Margin of Victory in Preferential Parliamentary Elections. <i>Lecture Notes in Computer Science</i> , 2018 , 1-16	0.9	5
104	Core-Guided and Core-Boosted Search for CP. Lecture Notes in Computer Science, 2020, 205-221	0.9	5
103	A Bit-Vector Solver with Word-Level Propagation. <i>Lecture Notes in Computer Science</i> , 2016 , 374-391	0.9	5
102	MiniZinc with Strings. Lecture Notes in Computer Science, 2017 , 59-75	0.9	5
101	To Encode or to Propagate? The Best Choice for Each Constraint in SAT. <i>Lecture Notes in Computer Science</i> , 2013 , 97-106	0.9	5
100	Optimisation Modelling for Software Developers. <i>Lecture Notes in Computer Science</i> , 2012 , 274-289	0.9	5
99	Solution-Based Phase Saving for CP: A Value-Selection Heuristic to Simulate Local Search Behavior in Complete Solvers. <i>Lecture Notes in Computer Science</i> , 2018 , 99-108	0.9	5
98	Pairwise symmetry reasoning for multi-agent path finding search. <i>Artificial Intelligence</i> , 2021 , 301, 1035	7 3 46	5
97	Multi-objective short-term production scheduling for open-pit mines: a hierarchical decomposition-based algorithm. <i>Engineering Optimization</i> , 2018 , 50, 2143-2160	2	4
96	Solver-Independent Large Neighbourhood Search. Lecture Notes in Computer Science, 2018, 81-98	0.9	4
95	Toward Computing the Margin of Victory in Single Transferable Vote Elections. <i>INFORMS Journal on Computing</i> , 2019 , 31, 636-653	2.4	4
94	Exploiting subproblem dominance in constraint programming. Constraints, 2012, 17, 1-38	0.3	4
93	A CLP heap solver for test case generation. <i>Theory and Practice of Logic Programming</i> , 2013 , 13, 721-735	50.8	4
92	Dominance breaking constraints. <i>Constraints</i> , 2015 , 20, 155-182	0.3	4

91	Piecewise linear approximation of protein structures using the principle of minimum message length. <i>Bioinformatics</i> , 2011 , 27, i43-51	7.2	4
90	A Hybrid BDD and SAT Finite Domain Constraint Solver. Lecture Notes in Computer Science, 2005, 103-1	17.9	4
89	A Generic Framework for Context-Sensitive Analysis of Modular Programs. <i>Lecture Notes in Computer Science</i> , 2004 , 233-260	0.9	4
88	Fourier Elimination for Compiling Constraint Hierarchies. <i>Constraints</i> , 2002 , 7, 199-219	0.3	4
87	Techniques Inspired by Local Search for Incomplete MaxSAT and the Linear Algorithm: Varying Resolution and Solution-Guided Search. <i>Lecture Notes in Computer Science</i> , 2019 , 177-194	0.9	4
86	Parallelizing Constraint Programming with Learning. <i>Lecture Notes in Computer Science</i> , 2016 , 142-158	0.9	4
85	A Stochastic Non-CNF SAT Solver. Lecture Notes in Computer Science, 2006, 120-129	0.9	4
84	A General Implementation Framework for Tabled CLP. Lecture Notes in Computer Science, 2012, 104-119	9 0.9	4
83	Orthogonal Hyperedge Routing. Lecture Notes in Computer Science, 2012, 51-64	0.9	4
82	A Generic Method for Identifying and Exploiting Dominance Relations. <i>Lecture Notes in Computer Science</i> , 2012 , 6-22	0.9	4
81	Solving Difference Constraints over Modular Arithmetic. Lecture Notes in Computer Science, 2013, 215-2	2 3:0 9	4
80	Encoding Linear Constraints with Implication Chains to CNF. <i>Lecture Notes in Computer Science</i> , 2015 , 3-11	0.9	4
79	Universal Architectural Concepts Underlying Protein Folding Patterns. <i>Frontiers in Molecular Biosciences</i> , 2020 , 7, 612920	5.6	4
78	Constraints for symmetry breaking in graph representation. <i>Constraints</i> , 2019 , 24, 1-24	0.3	4
77	Constraint Programming for Dynamic Symbolic Execution of JavaScript. <i>Lecture Notes in Computer Science</i> , 2019 , 1-19	0.9	3
76	Exact and Heuristic Methods for the Resource-Constrained Net Present Value Problem 2015 , 299-318		3
75	Propagating lex, find and replace with Dashed Strings. Lecture Notes in Computer Science, 2018, 18-34	0.9	3
74	A practical object-oriented analysis engine for CLP 1998 , 28, 199-224		3

(2017-2008)

73	Solving Partial Order Constraints for LPO Termination. <i>Journal of Satisfiability, Boolean Modeling and Computation</i> , 2008 , 5, 193-215	1.2	3
72	Modelling with Option Types in MiniZinc. Lecture Notes in Computer Science, 2014, 88-103	0.9	3
71	Explaining Producer/Consumer Constraints. Lecture Notes in Computer Science, 2016, 438-454	0.9	3
70	Explaining Propagators for s-DNNF Circuits. Lecture Notes in Computer Science, 2012, 195-210	0.9	3
69	There Are No CNF Problems. Lecture Notes in Computer Science, 2013, 19-21	0.9	3
68	Inter-instance Nogood Learning in Constraint Programming. <i>Lecture Notes in Computer Science</i> , 2012 , 238-247	0.9	3
67	Nutmeg: a MIP and CP Hybrid Solver Using Branch-and-Check. <i>SN Operations Research Forum</i> , 2020 , 1, 1	0.5	3
66	Compiling CP subproblems to MDDs and d-DNNFs. <i>Constraints</i> , 2019 , 24, 56-93	0.3	3
65	Declarative Local-Search Neighbourhoods in MiniZinc 2018 ,		3
64	Auditing Hamiltonian Elections. Lecture Notes in Computer Science, 2021, 235-250	0.9	3
63	Statistical Compression of Protein Folding Patterns for Inference of Recurrent Substructural Themes 2017 ,		2
62	How precise are reported protein coordinate data?. <i>Acta Crystallographica Section D: Biological Crystallography</i> , 2014 , 70, 904-6		2
61	Optimal automatic table layout 2011 ,		2
60	Building Constraint Solvers with HAL. Lecture Notes in Computer Science, 2001, 90-104	0.9	2
59	Compiling Conditional Constraints. Lecture Notes in Computer Science, 2019, 384-400	0.9	2
58	A Satisfiability Solving Approach 2015 , 135-160		2
57	Modelling Destructive Assignments. <i>Lecture Notes in Computer Science</i> , 2013 , 315-330	0.9	2

55	Nested Constraint Programs. Lecture Notes in Computer Science, 2014, 240-255	0.9	2
54	Stochastic MiniZinc. Lecture Notes in Computer Science, 2014 , 636-645	0.9	2
53	Wombit: A Portfolio Bit-Vector Solver Using Word-Level Propagation. <i>Journal of Automated Reasoning</i> , 2019 , 63, 723-762	1	2
52	Assertion-Based Approaches to Auditing Complex Elections, with Application to Party-List Proportional Elections. <i>Lecture Notes in Computer Science</i> , 2021 , 47-62	0.9	2
51	Propagating Regular Membership with Dashed Strings. Lecture Notes in Computer Science, 2018, 13-29	0.9	2
50	Effective Strictness Analysis with HORN Constraints. Lecture Notes in Computer Science, 2001, 73-92	0.9	2
49	Two type extensions for the constraint modeling language MiniZinc. <i>Science of Computer Programming</i> , 2015 , 111, 156-189	1.1	1
48	A complete solution to the Maximum Density Still Life Problem. <i>Artificial Intelligence</i> , 2012 , 184-185, 1-16	3.6	1
47	Finite type extensions in constraint programming 2013,		1
46	Statistical Inference of Protein "LEGO Bricks" 2013 ,		1
45	An Efficient Evaluation Technique for Non-Stratified Programs by Transformation to Explicitly Locally Stratified Programs. <i>Journal of Systems Integration</i> , 1997 , 7, 191-230		1
44	Dynamic variable elimination during propagation solving 2008,		1
43	Checking modes of HAL programs. <i>Theory and Practice of Logic Programming</i> , 2005 , 5, 623-667	0.8	1
42	Exception analysis for non-strict languages. ACM SIGPLAN Notices, 2002, 37, 98-109	0.2	1
41	Breaking Symmetries with Lex Implications. <i>Lecture Notes in Computer Science</i> , 2018 , 182-197	0.9	1
40	Information-Theoretic Inference of an Optimal Dictionary of Protein Supersecondary Structures. <i>Methods in Molecular Biology</i> , 2019 , 1958, 123-131	1.4	1
39	Smooth Linear Approximation of Non-overlap Constraints. Lecture Notes in Computer Science, 2008, 45-	59 .9	1
38	An Introduction to Search Combinators. Lecture Notes in Computer Science, 2013, 2-16	0.9	1

37	Loop Untangling. Lecture Notes in Computer Science, 2014, 340-355	0.9	1
36	Transformation-Enabled Precondition Inference. <i>Theory and Practice of Logic Programming</i> ,1-17	0.8	1
35	A practical object-oriented analysis engine for CLP 1998 , 28, 199		1
34	Dashed Strings and the Replace(-all) Constraint. Lecture Notes in Computer Science, 2020, 3-20	0.9	Ο
33	Fast optimal and bounded suboptimal Euclidean pathfinding. Artificial Intelligence, 2022, 302, 103624	3.6	0
32	Exact Approaches to the Multi-agent Collective Construction Problem. <i>Lecture Notes in Computer Science</i> , 2020 , 743-758	0.9	O
31	Algorithm Selection for Dynamic Symbolic Execution: A Preliminary Study. <i>Lecture Notes in Computer Science</i> , 2021 , 192-209	0.9	0
30	Branch-and-cut-and-price for multi-agent path finding. Computers and Operations Research, 2022, 10580)9 .6	O
29	Branch-and-cut-and-price for the Electric Vehicle Routing Problem with Time Windows, Piecewise-Linear Recharging and Capacitated Recharging Stations. <i>Computers and Operations Research</i> , 2022 , 105870	4.6	0
28	Automatic Minimal-Height Table Layout. INFORMS Journal on Computing, 2015, 27, 449-461	2.4	
27	AI@NICTA. <i>AI Magazine</i> , 2012 , 33, 115	6.1	
26	Propagating systems of dense linear integer constraints. <i>Constraints</i> , 2009 , 14, 235-253	0.3	
25	Introduction to the Special Issue on Constraints and Databases. <i>Constraints</i> , 1997 , 2, 243-243	0.3	
24	Improving PARMA trailing. Theory and Practice of Logic Programming, 2006, 6, 609-644	0.8	
23	Solving Satisfaction Problems Using Large-Neighbourhood Search. <i>Lecture Notes in Computer Science</i> , 2020 , 55-71	0.9	
22	Shifting the Balance-of-Power in STV Elections. <i>Lecture Notes in Computer Science</i> , 2020 , 1-18	0.9	
21	Lightweight Nontermination Inference with CHCs. Lecture Notes in Computer Science, 2021, 383-402	0.9	
20	Disjunctive Interval Analysis. <i>Lecture Notes in Computer Science</i> , 2021 , 144-165	0.9	

19	Dissecting Widening: Separating Termination from Information. <i>Lecture Notes in Computer Science</i> , 2019 , 95-114	0.9
18	Exploring Declarative Local-Search Neighbourhoods with Constraint Programming. <i>Lecture Notes in Computer Science</i> , 2019 , 37-53	0.9
17	Large Neighborhood Search for Temperature Control with Demand Response. <i>Lecture Notes in Computer Science</i> , 2020 , 603-619	0.9
16	The Argmax Constraint. Lecture Notes in Computer Science, 2020, 323-337	0.9
15	Theoretical and Experimental Results for Planning with Learned Binarized Neural Network Transition Models. <i>Lecture Notes in Computer Science</i> , 2020 , 917-934	0.9
14	Aggregation and Garbage Collection for Online Optimization. <i>Lecture Notes in Computer Science</i> , 2020 , 231-247	0.9
13	Random Errors Are Not Necessarily Politically Neutral. Lecture Notes in Computer Science, 2020, 19-35	0.9
12	A Bounded Path Propagator on Directed Graphs. Lecture Notes in Computer Science, 2016 , 189-206	0.9
11	Range-Consistent Forbidden Regions of Allen Relations. Lecture Notes in Computer Science, 2017, 21-2	9 0.9
10	Minimizing Landscape Resistance for Habitat Conservation. <i>Lecture Notes in Computer Science</i> , 2017 , 113-130	0.9
9	Memoizing a Monadic Mixin DSL. Lecture Notes in Computer Science, 2011, 68-85	0.9
8	Dominance Driven Search. Lecture Notes in Computer Science, 2013, 217-229	0.9
7	Those Who Cannot Remember the Past Are Condemned to Repeat It. <i>Lecture Notes in Computer Science</i> , 2013 , 5-6	0.9
6	Seeing Around Corners: Fast Orthogonal Connector Routing. <i>Lecture Notes in Computer Science</i> , 2014 , 31-37	0.9
5	A complete refinement procedure for regular separability of context-free languages. <i>Theoretical Computer Science</i> , 2016 , 625, 1-24	1.1
4	Sequential Precede Chain for Value Symmetry Elimination. <i>Lecture Notes in Computer Science</i> , 2018 , 144	1-d.5 ₉ 9
3	A Fresh Look at Zones and Octagons. <i>ACM Transactions on Programming Languages and Systems</i> , 2021 , 43, 1-51	1.6
2	Coupling Different Integer Encodings for SAT. Lecture Notes in Computer Science, 2022, 44-63	0.9

Enumerated Types and Type Extensions for MiniZinc. Lecture Notes in Computer Science, 2022, 374-389 0.9