Ning Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227445/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ArabidopsisÂERF012ÂIs a Versatile Regulator of Plant Growth, Development and Abiotic Stress Responses. International Journal of Molecular Sciences, 2022, 23, 6841.	4.1	4
2	A laminâ€like protein OsNMCP1 regulates drought resistance and root growth through chromatin accessibility modulation by interacting with a chromatin remodeller OsSWI3C in rice. New Phytologist, 2020, 227, 65-83.	7.3	20
3	Oscillating Aquaporin Phosphorylation and 14-3-3 Proteins Mediate the Circadian Regulation of Leaf Hydraulics. Plant Cell, 2019, 31, 417-429.	6.6	47
4	Reversible Histone H2B Monoubiquitination Fine-Tunes Abscisic Acid Signaling and Drought Response in Rice. Molecular Plant, 2019, 12, 263-277.	8.3	53
5	Current understanding of genetic and molecular basis of cold tolerance in rice. Molecular Breeding, 2019, 39, 1.	2.1	11
6	Natural variation at XND1 impacts root hydraulics and trade-off for stress responses in Arabidopsis. Nature Communications, 2018, 9, 3884.	12.8	67
7	Flip-flop method: A new T1-weighted flow-MRI for plants studies. PLoS ONE, 2018, 13, e0194845.	2.5	8
8	Co-overexpression of the Constitutively Active Form of OsbZIP46 and ABA-Activated Protein Kinase SAPK6 Improves Drought and Temperature Stress Resistance in Rice. Frontiers in Plant Science, 2017, 8, 1102.	3.6	68
9	Feedback Regulation of ABA Signaling and Biosynthesis by a bZIP Transcription Factor Targets Drought-Resistance-Related Genes. Plant Physiology, 2016, 171, 2810-2825.	4.8	245
10	MODD Mediates Deactivation and Degradation of OsbZIP46 to Negatively Regulate ABA Signaling and Drought Resistance in Rice. Plant Cell, 2016, 28, 2161-2177.	6.6	140
11	Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Reports, 2013, 32, 1795-1806.	5.6	69
12	Constitutive Activation of Transcription Factor OsbZIP46 Improves Drought Tolerance in Rice Â. Plant Physiology, 2012, 158, 1755-1768.	4.8	305
13	Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice. Plant Molecular Biology, 2009, 71, 291-305.	3.9	336
14	Systematic identification of X1-homologous genes reveals a family involved in stress responses in rice. Plant Molecular Biology, 2009, 71, 483-496.	3.9	13
15	Evaluation of Seven Function-Known Candidate Genes for their Effects on Improving Drought Resistance of Transgenic Rice under Field Conditions. Molecular Plant, 2009, 2, 73-83.	8.3	216
16	Characterization of OsbZIP23 as a Key Player of the Basic Leucine Zipper Transcription Factor Family for Conferring Abscisic Acid Sensitivity and Salinity and Drought Tolerance in Rice Â. Plant Physiology, 2008, 148, 1938-1952.	4.8	576
17	Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theoretical and Applied Genetics, 2007, 115, 35-46.	3.6	462