Chao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227159/publications.pdf

Version: 2024-02-01

430754 454834 30 929 18 30 citations h-index g-index papers 32 32 32 1477 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	miR-324-3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma. Cancer Cell International, 2017, 17, 2.	1.8	66
2	miRâ€185â€3p regulates nasopharyngeal carcinoma radioresistance by targeting <scp>WNT</scp> 2B <i>iin vitro</i> . Cancer Science, 2014, 105, 1560-1568.	1.7	63
3	The <i>NOTCH4</i> àê" <i>HEY1</i> Pathway Induces Epithelial–Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2018, 24, 619-633.	3.2	63
4	Chromatin dysregulation and DNA methylation at transcription start sites associated with transcriptional repression in cancers. Nature Communications, 2019, 10, 2188.	5.8	61
5	Genome-Wide Analyses of Radioresistance-Associated miRNA Expression Profile in Nasopharyngeal Carcinoma Using Next Generation Deep Sequencing. PLoS ONE, 2013, 8, e84486.	1.1	60
6	Genome-wide analyses of long noncoding RNA expression profiles correlated with radioresistance in nasopharyngeal carcinoma via next-generation deep sequencing. BMC Cancer, 2016, 16, 719.	1.1	54
7	Cannabinoids Promote Progression of HPV-Positive Head and Neck Squamous Cell Carcinoma via p38 MAPK Activation. Clinical Cancer Research, 2020, 26, 2693-2703.	3.2	52
8	miRâ€30eâ€5p represses angiogenesis and metastasis by directly targeting AEGâ€1 in squamous cell carcinoma of the head and neck. Cancer Science, 2020, 111, 356-368.	1.7	45
9	Next generation deep sequencing identified a novel lncRNA n375709 associated with paclitaxel resistance in nasopharyngeal carcinoma. Oncology Reports, 2016, 36, 1861-1867.	1.2	44
10	miR-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro. Oncology Letters, 2017, 13, 2631-2636.	0.8	44
11	Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell International, 2018, 18, 120.	1.8	42
12	Increased expression of miR-93 is associated with poor prognosis in head and neck squamous cell carcinoma. Tumor Biology, 2015, 36, 3949-3956.	0.8	38
13	Wnt3a promotes radioresistance via autophagy in squamous cell carcinoma of the head and neck. Journal of Cellular and Molecular Medicine, 2019, 23, 4711-4722.	1.6	38
14	Characterization of Alternative Splicing Events in HPV-Negative Head and Neck Squamous Cell Carcinoma Identifies an Oncogenic DOCK5 Variant. Clinical Cancer Research, 2018, 24, 5123-5132.	3. 2	36
15	Discovery and development of differentially methylated regions in human papillomavirusâ€related oropharyngeal squamous cell carcinoma. International Journal of Cancer, 2018, 143, 2425-2436.	2.3	35
16	miR-93-5p enhances migration and invasion by targeting RGMB in squamous cell carcinoma of the head and neck. Journal of Cancer, 2020, 11, 3871-3881.	1.2	25
17	KDM5B overexpression predicts a poor prognosis in patients with squamous cell carcinoma of the head and neck. Journal of Cancer, 2018, 9, 198-204.	1.2	24
18	lonizing radiation promotes advanced malignant traits in nasopharyngeal carcinoma via activation of epithelial-mesenchymal transition and the cancer stem cell phenotype. Oncology Reports, 2016, 36, 72-78.	1.2	23

#	Article	IF	CITATIONS
19	Pseudopodium-enriched atypical kinase 1 mediates angiogenesis by modulating GATA2-dependent VEGFR2 transcription. Cell Discovery, 2018, 4, 26.	3.1	19
20	A novel splice variant of LOXL2 promotes progression of human papillomavirus–negative head and neck squamous cell carcinoma. Cancer, 2020, 126, 737-748.	2.0	16
21	Aberrant expression of CPSF1 promotes head and neck squamous cell carcinoma via regulating alternative splicing. PLoS ONE, 2020, 15, e0233380.	1.1	13
22	Deficient Cholesterol Esterification in Plasma of apoc2 Knockout Zebrafish and Familial Chylomicronemia Patients. PLoS ONE, 2017, 12, e0169939.	1.1	9
23	miR-3187-3p enhances migration and invasion by targeting PER2 in head and neck squamous cell carcinomas. Journal of Cancer, 2021, 12, 5231-5240.	1.2	8
24	Wnt3a protein overexpression predicts worse overall survival in laryngeal squamous cell carcinoma. Journal of Cancer, 2019, 10, 4633-4638.	1.2	7
25	Reciprocal activation of HEY1 and NOTCH4 under SOX2 control promotes EMT in head and neck squamous cell carcinoma. International Journal of Oncology, 2020, 58, 226-237.	1.4	7
26	UBE2O Promotes Progression and Epithelial–Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma. OncoTargets and Therapy, 2020, Volume 13, 6191-6202.	1.0	6
27	Targeting Viral DNA and Promoter Hypermethylation in Salivary Rinses for Recurrent HPV-Positive Oropharyngeal Cancer. Otolaryngology - Head and Neck Surgery, 2020, 162, 512-519.	1.1	6
28	miR-328-3p promotes migration and invasion by targeting H2AFX in head and neck squamous cell carcinoma. Journal of Cancer, 2021, 12, 6519-6530.	1.2	5
29	Elevated expression of MKRN3 in squamous cell carcinoma of the head and neck and its clinical significance. Cancer Cell International, 2021, 21, 557.	1.8	3
30	Rational genomic optimization of DNA detection for human papillomavirus type 16 in head and neck squamous cell carcinoma. Head and Neck, 2020, 42, 688-697.	0.9	2