
Jan Gerritse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8227035/publications.pdf Version: 2024-02-01

IAN CEDDITSE

#	Article	IF	CITATIONS
1	Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions. Journal of Contaminant Hydrology, 2022, 248, 104006.	3.3	2
2	Microbial side effects of underground hydrogen storage – Knowledge gaps, risks and opportunities for successful implementation. International Journal of Hydrogen Energy, 2021, 46, 8594-8606.	7.1	112
3	The dissolution and microbial degradation of mobile aromatic hydrocarbons from a Pintsch gas tar DNAPL source zone. Science of the Total Environment, 2020, 722, 137797.	8.0	7
4	Passive Dosing of Organic Substrates for Nitrateâ€Removing Bioreactors Applied in Field Margins. Journal of Environmental Quality, 2019, 48, 394-402.	2.0	8
5	Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater. Water Research, 2019, 148, 314-323.	11.3	23
6	Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions. Applied Microbiology and Biotechnology, 2018, 102, 3387-3397.	3.6	22
7	Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition. Applied Microbiology and Biotechnology, 2017, 101, 5175-5188.	3.6	33
8	Genome Analysis and Physiological Comparison of Alicycliphilus denitrificans Strains BC and K601T. PLoS ONE, 2013, 8, e66971.	2.5	32
9	Anaerobic benzene degradation under denitrifying conditions: <i>Peptococcaceae</i> as dominant benzene degraders and evidence for a syntrophic process. Environmental Microbiology, 2012, 14, 1171-1181.	3.8	100
10	Genome Sequences of Alicycliphilus denitrificans Strains BC and K601 ^T . Journal of Bacteriology, 2011, 193, 5028-5029.	2.2	31
11	Stability of the total and functional microbial communities in river sediment mesocosms exposed to anthropogenic disturbances. FEMS Microbiology Ecology, 2010, 74, 72-82.	2.7	13
12	Correlation of <i>Dehalococcoides</i> 16S rRNA and Chloroethene-Reductive Dehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater. Applied and Environmental Microbiology, 2010, 76, 843-850.	3.1	92
13	Benzene Degradation at a Site Amended with Nitrate or Chlorate. Bioremediation Journal, 2009, 13, 180-187.	2.0	6
14	Degradation of 1,2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Research, 2009, 43, 3207-3216.	11.3	46
15	Isolation and Characterization of <i>Alicycliphilus denitrificans</i> Strain BC, Which Grows on Benzene with Chlorate as the Electron Acceptor. Applied and Environmental Microbiology, 2008, 74, 6672-6681.	3.1	103
16	Physiological and phylogenetic characterization of a stable benzene-degrading, chlorate-reducing microbial community. FEMS Microbiology Ecology, 2007, 60, 312-321.	2.7	56
17	Bioremediation of BTEX Hydrocarbons: Effect of Soil Inoculation with the Toluene-Growing Fungus Cladophialophora Sp. Strain T1. Biodegradation, 2004, 15, 59-65.	3.0	52
18	Degradation pathway of 2-chloroethanol in Pseudomonas stutzeri strain JJ under denitrifying conditions. Archives of Microbiology, 2004, 182, 514-519.	2.2	6

JAN GERRITSE

#	Article	IF	CITATIONS
19	Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiology Ecology, 2004, 47, 223-234.	2.7	53
20	Anaerobic oxidation of 2-chloroethanol under denitrifying conditions by Pseudomonas stutzeri strain JJ. Applied Microbiology and Biotechnology, 2003, 63, 68-74.	3.6	24
21	Biofouling reduction in recirculating cooling systems through biofiltration of process water. Water Research, 2003, 37, 525-532.	11.3	66
22	Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. Archives of Microbiology, 2001, 176, 165-169.	2.2	54
23	Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environmental Microbiology, 2001, 3, 92-99.	3.8	53
24	Influence of Different Electron Donors and Acceptors on Dehalorespiration of Tetrachloroethene by <i>Desulfitobacterium frappieri</i> TCE1. Applied and Environmental Microbiology, 1999, 65, 5212-5221.	3.1	160
25	Complete degradation of tetrachloroethene in coupled anoxic and oxic chemostats. Applied Microbiology and Biotechnology, 1997, 48, 553-562.	3.6	35
26	Extent of Reductive Dechlorination of Chlorobenzoates in Anoxic Sediment Slurries Depends on the Sequence of Chlorine Removal. Environmental Science & Technology, 1996, 30, 1352-1357.	10.0	10
27	Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho -chlorinated phenols. Archives of Microbiology, 1996, 165, 132-140.	2.2	269
28	Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Applied and Environmental Microbiology, 1996, 62, 2427-2434.	3.1	62
29	Complete degradation of tetrachloroethene by combining anaerobic dechlorinating and aerobic methanotrophic enrichment cultures. Applied Microbiology and Biotechnology, 1995, 43, 920-928.	3.6	73
30	Mineralization of the herbicide 2,3,6-trichlorobenzoic acid by a co-culture of anaerobic and aerobic bacteria. FEMS Microbiology Letters, 1992, 101, 89-98.	1.8	20
31	Specific removal of chlorine from the ortho-position of halogenated benzoic acids by reductive dechlorination in anaerobic enrichment cultures. FEMS Microbiology Letters, 1992, 100, 273-280.	1.8	5
32	Modelling of mixed chemostat cultures of an aerobic bacterium, Comamonas testosteroni, and an anaerobic bacterium, Veillonella alcalescens: comparison with experimental data. Applied and Environmental Microbiology, 1992, 58, 1466-1476.	3.1	40
33	Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions. FEMS Microbiology Letters, 1990, 66, 87-93.	1.8	63