Shamik Chowdhury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8226667/publications.pdf

Version: 2024-02-01

72 papers 5,742 citations

34 h-index 91712 69 g-index

74 all docs

74 docs citations

times ranked

74

6246 citing authors

#	Article	lF	CITATIONS
1	Probabilistic approach for health hazard assessment of trihalomethanes through successive showering events. Environmental Science and Pollution Research, 2023, 30, 24793-24803.	2.7	3
2	Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environmental Science and Pollution Research, 2022, 29, 85742-85760.	2.7	42
3	Occurrence and Potential Health Risks Due to Trihalomethanes and Microplastics in Bottled Water. Environmental Engineering Science, 2022, 39, 523-534.	0.8	11
4	Carbon material produced by hydrothermal carbonisation of food waste as an electrode material for supercapacitor application: A circular economy approach. Waste Management and Research, 2022, 40, 1514-1526.	2,2	8
5	Grapheneâ€based macromolecular assemblies as high-performance absorbents for oil and chemical spills response and cleanup. Journal of Environmental Chemical Engineering, 2022, 10, 107586.	3.3	3
6	Biomass-derived microporous adsorbents for selective CO2 capture., 2021,, 661-679.		3
7	Landfill leachate as an alternative moisture source for hydrothermal carbonization of municipal solid wastes to solid biofuels. Bioresource Technology, 2021, 320, 124410.	4.8	25
8	Graphene-based Macroassemblies as Highly Efficient and Selective Adsorbents for Postcombustion CO2 Capture. Chemistry in the Environment, 2021, , 384-395.	0.2	0
9	Therapeutic Applications of Metal and Metal-Oxide Nanoparticles: Dermato-Cosmetic Perspectives. Frontiers in Bioengineering and Biotechnology, 2021, 9, 724499.	2.0	25
10	A novel bio-electro-Fenton process for eliminating sodium dodecyl sulphate from wastewater using dual chamber microbial fuel cell. Bioresource Technology, 2021, 341, 125850.	4.8	37
11	Efficient removal of bisphenol A and disinfection of waterborne pathogens by boron/nitrogen codoped graphene aerogels via the synergy of adsorption and photocatalysis under visible light. Journal of Environmental Chemical Engineering, 2020, 8, 104300.	3.3	16
12	Nitrogen and Sulfur Codoped Graphene Macroassemblies as High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Microbial Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16591-16599.	3.2	25
13	Grapheneâ€Based Macromolecular Assemblies for Scavenging Heavy Metals. ChemistryOpen, 2020, 9, 1065-1073.	0.9	2
14	Three-Dimensional Graphene-Based Macroscopic Assemblies as Super-Absorbents for Oils and Organic Solvents., 2019,, 43-68.		4
15	Nitrogen and sulfur codoped graphene aerogels as absorbents and visible light-active photocatalysts for environmental remediation applications. Environmental Pollution, 2019, 251, 344-353.	3.7	31
16	Date Palm Based Activated Carbon for the Efficient Removal of Organic Dyes from Aqueous Environment. Sustainable Agriculture Reviews, 2019, , 247-263.	0.6	12
17	New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. Journal of Colloid and Interface Science, 2019, 534, 574-585.	5.0	38
18	Effect of boron doping level on the photocatalytic activity of graphene aerogels. Carbon, 2018, 128, 237-248.	5.4	56

#	Article	IF	CITATIONS
19	Three-dimensional graphene-based macrostructures for sustainable energy applications and climate change mitigation. Progress in Materials Science, 2017, 90, 224-275.	16.0	60
20	Nitrogen-doped graphene hydrogels as potential adsorbents and photocatalysts for environmental remediation. Chemical Engineering Journal, 2017, 327, 751-763.	6.6	67
21	Holey graphene frameworks for highly selective post-combustion carbon capture. Scientific Reports, 2016, 6, 21537.	1.6	54
22	Three-Dimensional Graphene-Based Porous Adsorbents for Postcombustion CO ₂ Capture. Industrial & Description of the Company of the	1.8	94
23	Highly efficient, rapid and selective CO2 capture by thermally treated graphene nanosheets. Journal of CO2 Utilization, 2016, 13, 50-60.	3.3	80
24	Biomass derived low-cost microporous adsorbents for efficient CO 2 capture. Fuel, 2015, 148, 246-254.	3.4	244
25	Recent advances and progress in the development of graphene-based adsorbents for CO ₂ capture. Journal of Materials Chemistry A, 2015, 3, 21968-21989.	5.2	142
26	Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chemical Engineering Journal, 2015, 263, 374-384.	6.6	121
27	Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Advances in Colloid and Interface Science, 2014, 204, 35-56.	7.0	434
28	Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresource Technology, 2014, 161, 310-319.	4.8	171
29	Plant derived porous graphene nanosheets for efficient CO ₂ capture. RSC Advances, 2014, 4, 44634-44643.	1.7	39
30	Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Applied Catalysis B: Environmental, 2014, 160-161, 307-324.	10.8	186
31	Adsorption of malachite green from aqueous solution by naohâ€modified rice husk: Fixedâ€bed column studies. Environmental Progress and Sustainable Energy, 2013, 32, 633-639.	1.3	22
32	Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products, 2013, 41, 165-171.	2.5	149
33	Response surface optimization of a dynamic dye adsorption process: a case study of crystal violet adsorption onto NaOH-modified rice husk. Environmental Science and Pollution Research, 2013, 20, 1698-1705.	2.7	72
34	Removal of Crystal Violet from Aqueous Solution by Adsorption onto Eggshells: Equilibrium, Kinetics, Thermodynamics and Artificial Neural Network Modeling. Waste and Biomass Valorization, 2013, 4, 655-664.	1.8	33
35	Batch and continuous (fixed-bed column) biosorption of Cu(II) by Tamarindus indica fruit shell. Korean Journal of Chemical Engineering, 2013, 30, 369-378.	1.2	12
36	Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system. Environmental Science and Pollution Research, 2013, 20, 1050-1058.	2.7	88

#	Article	IF	CITATIONS
37	Artificial neural network (ANN) modeling of dynamic adsorption of crystal violet from aqueous solution using citric-acid-modified rice (Oryza sativa) straw as adsorbent. Clean Technologies and Environmental Policy, 2013, 15, 255-264.	2.1	31
38	Biosorption of Congo red and Indigo carmine by nonviable biomass of a new <i>Dietzia</i> strain isolated from the effluent of a textile industry. Desalination and Water Treatment, 2013, 51, 5840-5847.	1.0	15
39	Removal of phenol from aqueous solution by adsorption onto seashells: equilibrium, kinetic and thermodynamic studies. Journal of Water Reuse and Desalination, 2013, 3, 119-127.	1.2	5
40	Adsorption of Crystal Violet From Aqueous Solution by Citric Acid Modified Rice Straw: Equilibrium, Kinetics, and Thermodynamics. Separation Science and Technology, 2013, 48, 1339-1348.	1.3	28
41	Citric acid modified wheat bran as a potential adsorbent for removal of Cu(II) and Malachite Green from aqueous solutions. Desalination and Water Treatment, 2013, 51, 6038-6048.	1.0	11
42	Fish (Labeo rohita) scales as a new biosorbent for removal of textile dyes from aqueous solutions. Journal of Water Reuse and Desalination, 2012, 2, 175-184.	1.2	4
43	Batch Removal of Crystal Violet from Aqueous Solution by H ₂ SO ₄ Modified Sugarcane Bagasse: Equilibrium, Kinetic, and Thermodynamic Profile. Separation Science and Technology, 2012, 47, 1898-1905.	1.3	15
44	Fish (<i>Labeo rohita</i>) Scales as Potential Low-Cost Biosorbent for Removal of Malachite Green from Aqueous Solutions. Bioremediation Journal, 2012, 16, 235-242.	1.0	24
45	Biosorption of methylene blue from aqueous solutions by a waste biomaterial: hen feathers. Applied Water Science, 2012, 2, 209-219.	2.8	48
46	Biosorption of Direct Red 28 (Congo Red) from Aqueous Solutions by Eggshells: Batch and Column Studies. Separation Science and Technology, 2012, 47, 112-123.	1.3	63
47	Scale-up of a dye adsorption process using chemically modified rice husk: optimization using response surface methodology. Desalination and Water Treatment, 2012, 37, 331-336.	1.0	43
48	Adsorption of crystal violet from aqueous solution onto sugarcane bagasse: central composite design for optimization of process variables. Journal of Water Reuse and Desalination, 2012, 2, 55-65.	1.2	13
49	Removal of Pb(II) from aqueous solutions by adsorption onto clayey soil of Indian origin: Equilibrium, kinetic and thermodynamic profile. Korean Journal of Chemical Engineering, 2012, 29, 1086-1093.	1.2	10
50	Biosorption of hazardous textile dyes from aqueous solutions by hen feathers: Batch and column studies. Korean Journal of Chemical Engineering, 2012, 29, 1567-1576.	1.2	14
51	Fixed-bed adsorption of Malachite Green onto binary solid mixture of adsorbents: seashells and eggshells. Toxicological and Environmental Chemistry, 2012, 94, 1272-1282.	0.6	10
52	Utilization of a domestic wasteâ€"Eggshells for removal of hazardous Malachite Green from aqueous solutions. Environmental Progress and Sustainable Energy, 2012, 31, 415-425.	1.3	50
53	Removal of safranin from aqueous solutions by NaOHâ€treated rice husk: thermodynamics, kinetics and isosteric heat of adsorption. Asia-Pacific Journal of Chemical Engineering, 2012, 7, 236-249.	0.8	51
54	Insight into biosorption equilibrium, kinetics and thermodynamics of crystal violet onto Ananas comosus (pineapple) leaf powder. Applied Water Science, 2012, 2, 135-141.	2.8	53

#	Article	lF	CITATIONS
55	Batch and continuous (fixed-bed column) biosorption of crystal violet by Artocarpus heterophyllus (jackfruit) leaf powder. Colloids and Surfaces B: Biointerfaces, 2012, 92, 262-270.	2.5	183
56	Scale-up of a dye adsorption process using chemically modified rice husk: optimization using response surface methodology. Desalination and Water Treatment, 2012, , 331-336.	1.0	1
57	Pseudo-second-order kinetic models for the sorption of malachite green onto <i>Tamarindus indica</i> seeds: Comparison of linear and non-linear methods. Desalination and Water Treatment, 2011, 30, 229-236.	1.0	12
58	Comparative Analysis of Linear and Nonlinear Methods of Estimating the Pseudo-Second-Order Kinetic Parameters for Sorption of Malachite Green onto Pretreated Rice Husk. Bioremediation Journal, 2011, 15, 181-188.	1.0	31
59	Optimum Sorption Isotherm by Linear and Nonlinear Methods for Safranin onto Alkali-Treated Rice Husk. Bioremediation Journal, 2011, 15, 77-89.	1.0	73
60	Mechanistic, Kinetic, and Thermodynamic Evaluation of Adsorption of Hazardous Malachite Green onto Conch Shell Powder. Separation Science and Technology, 2011, 46, 1966-1976.	1.3	26
61	Adsorption Thermodynamics and Kinetics of Malachite Green onto Ca(OH)2-Treated Fly Ash. Journal of Environmental Engineering, ASCE, 2011, 137, 388-397.	0.7	27
62	Biosorption kinetics, thermodynamics and isosteric heat of sorption of Cu(II) onto Tamarindus indica seed powder. Colloids and Surfaces B: Biointerfaces, 2011, 88, 697-705.	2.5	60
63	Adsorption of Crystal Violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 2011, 86, 1533-1541.	5.1	466
64	Adsorption Kinetic Modeling of Safranin onto Rice Husk Biomatrix Using Pseudoâ€first―and Pseudoâ€secondâ€order Kinetic Models: Comparison of Linear and Nonâ€linear Methods. Clean - Soil, Air, Water, 2011, 39, 274-282.	0.7	78
65	Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surfaces B: Biointerfaces, 2011, 84, 520-527.	2.5	171
66	Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 2011, 265, 159-168.	4.0	799
67	Linear and Nonlinear Regression Analyses for Binary Sorption Kinetics of Methylene Blue and Safranin onto Pretreated Rice Husk. Bioremediation Journal, 2011, 15, 99-108.	1.0	21
68	Sea shell powder as a new adsorbent to remove Basic Green 4 (Malachite Green) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2010, 164, 168-177.	6.6	305
69	Assessment on the Removal of Malachite Green Using Tamarind Fruit Shell as Biosorbent. Clean - Soil, Air, Water, 2010, 38, 437-445.	0.7	121
70	Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chemical Engineering Journal, 2010, 165, 874-882.	6.6	281
71	Pseudo-Second-Order Kinetic Model for Biosorption of Methylene Blue onto Tamarind Fruit Shell: Comparison of Linear and Nonlinear Methods. Bioremediation Journal, 2010, 14, 196-207.	1.0	37
72	Insight Into Adsorption Thermodynamics. , 0, , .		150