Mio Takeuchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8226580/publications.pdf Version: 2024-02-01

Μιο Τλκεμομι

#	Article	IF	CITATIONS
1	Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the highâ€ŧemperature petroleum reservoir of Yabase oil field (Japan). Environmental Microbiology, 2011, 13, 1995-2006.	3.8	114
2	Arsenic resistance and removal by marine and non-marine bacteria. Journal of Biotechnology, 2007, 127, 434-442.	3.8	106
3	Carbon dioxide concentration dictates alternative methanogenic pathways in oil reservoirs. Nature Communications, 2013, 4, 1998.	12.8	98
4	Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3240-3246.	1.7	63
5	Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 462-468.	1.7	54
6	Rate determination and distribution of anammox activity in activated sludge treating swine wastewater. Bioresource Technology, 2010, 101, 2685-2690.	9.6	42
7	Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. Journal of Contaminant Hydrology, 2011, 124, 14-24.	3.3	35
8	A distinct freshwaterâ€adapted subgroup of ANMEâ€1 dominates active archaeal communities in terrestrial subsurfaces in Japan. Environmental Microbiology, 2011, 13, 3206-3218.	3.8	32
9	Characterization of humic acids in sediments from dam reservoirs by pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide: Influence of the structural features of humic acids on iron(II) binding capacity. Journal of Analytical and Applied Pyrolysis. 2011, 91, 323-331.	5.5	26
10	Possible cross-feeding pathway of facultative methylotroph Methyloceanibacter caenitepidi Gela4 on methanotroph Methylocaldum marinum S8. PLoS ONE, 2019, 14, e0213535.	2.5	22
11	Bacterial and Archaeal 16S rRNA Genes in Late Pleistocene to Holocene Muddy Sediments from the Kanto Plain of Japan. Geomicrobiology Journal, 2009, 26, 104-118.	2.0	21
12	Distribution and fate of biologically formed organoarsenicals in coastal marine sediment. Applied Organometallic Chemistry, 2005, 19, 945-951.	3.5	18
13	In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer. Water Research, 2005, 39, 2438-2444.	11.3	18
14	Estimating the viability of Chlorella exposed to oxidative stresses based around photocatalysis. International Biodeterioration and Biodegradation, 2013, 78, 1-6.	3.9	18
15	Skin bacteria of rainbow trout antagonistic to the fish pathogen Flavobacterium psychrophilum. Scientific Reports, 2021, 11, 7518.	3.3	18
16	Prevention of Phormidium tenue Biofilm Formation by TiO2 Photocatalysis. Microbes and Environments, 2009, 24, 241-245.	1.6	16
17	Tepidicaulis marinus gen. nov., sp. nov., a marine bacterium that reduces nitrate to nitrous oxide under strictly microaerobic conditions. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1749-1754.	1.7	16
18	Temperature and pH Dependence of Some Metals Leaching from Fly Ash of Municipal Solid Waste. Resource Geology, 2005, 55, 357-372.	0.8	12

Μιο Τακευснι

#	Article	IF	CITATIONS
19	Natural groundwater of a gas field utilizable for a bioremediation of trichloroethylene-contamination. Environmental Geology, 2004, 45, 891-898.	1.2	9
20	Distribution and characterization of anammox in a swine wastewater activated sludge facility. Water Science and Technology, 2013, 67, 2330-2336.	2.5	8
21	Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation. Journal of Hazardous Materials, 2009, 165, 967-973.	12.4	7
22	Acetate excretion by a methanotroph, <i>Methylocaldum marinum</i> S8, under aerobic conditions. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2326-2333.	1.3	6
23	Distribution of Methanotrophs in Trichloroethylene-Contaminated Aquifers in a Natural Gas Field. Geomicrobiology Journal, 2001, 18, 387-399.	2.0	5
24	Carbon-14 age and chemical evolution of Ca(HCO3)2-type groundwater of age less than 8,000 years in a confined sandy and muddy Pleistocene aquifer, Japan. Hydrogeology Journal, 2013, 21, 1289-1305.	2.1	5
25	Distribution of Dehalococcoides 16S rRNA and Dehalogenase Genes in Contaminated Sites. Environment and Natural Resources Research, 2017, 7, 37.	0.1	3
26	Microbial methane production and oxidation in the Holocene mud beneath the Kanto Plain of central Japan. Geochemical Journal, 2020, 54, 243-254.	1.0	3
27	Impact of Changes in Redox Conditions on Leaching of Some Elements from MSW Fly Ash. Resource Geology, 2006, 56, 191-196.	0.8	2
28	Complete dominant inheritance of intracellular leucine accumulation traits in polyploid yeasts. Yeast, 2022, 39, 272-282.	1.7	2
29	Role of Aquitard in Subsurface Microbial Activity. Journal of Geography (Chigaku Zasshi), 2007, 116, 915-921.	0.3	1
30	Microbial community structure in deep natural gas-bearing aquifers subjected to sulfate-containing fluid injection. Journal of Bioscience and Bioengineering, 2019, 127, 45-51.	2.2	1