Feng Jiangshan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8226103/publications.pdf

Version: 2024-02-01

331670 477307 3,857 29 21 29 h-index citations g-index papers 29 29 29 4326 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Highly Efficient and Stable CsPbTh ₃ (Th = I, Br, Cl) Perovskite Solar Cells by Combinational Passivation Strategy. Advanced Science, 2022, 9, e2105103.	11.2	20
2	The Final Step in the Application of Perovskite Solar Cells. Materials, 2022, 15, 2554.	2.9	2
3	lonicâ€Liquidâ€Perovskite Capping Layer for Stable 24.33%â€Efficient Solar Cell. Advanced Energy Materials, 2022, 12, .	19.5	80
4	Recordâ€Efficiency Flexible Perovskite Solar Cells Enabled by Multifunctional Organic Ions Interface Passivation. Advanced Materials, 2022, 34, e2201681.	21.0	186
5	Effect of Solvent Residue in the Thin-Film Fabrication on Perovskite Solar Cell Performance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28729-28737.	8.0	22
6	Balanced-Strength Additive for High-Efficiency Stable Perovskite Solar Cells. ACS Applied Energy Materials, 2022, 5, 8034-8041.	5.1	10
7	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie - International Edition, 2021, 60, 4238-4244.	13.8	221
8	Highâ€Efficiency Perovskite Solar Cells with Imidazoliumâ€Based Ionic Liquid for Surface Passivation and Charge Transport. Angewandte Chemie, 2021, 133, 4284-4290.	2.0	14
9	High-throughput large-area vacuum deposition for high-performance formamidine-based perovskite solar cells. Energy and Environmental Science, 2021, 14, 3035-3043.	30.8	121
10	Tripleâ€Cation and Mixedâ€Halide Perovskite Single Crystal for Highâ€Performance Xâ€ray Imaging. Advanced Materials, 2021, 33, e2006010.	21.0	163
11	Inch-sized high-quality perovskite single crystals by suppressing phase segregation for light-powered integrated circuits. Science Advances, 2021, 7, .	10.3	81
12	40.1% Record Lowâ€Light Solarâ€Cell Efficiency by Holistic Trapâ€Passivation using Micrometerâ€Thick Perovskite Film. Advanced Materials, 2021, 33, e2100770.	21.0	110
13	Semitransparent Flexible Perovskite Solar Cells for Potential Greenhouse Applications. Solar Rrl, 2021, 5, 2100264.	5.8	15
14	Large Leadâ€Free Perovskite Single Crystal for Highâ€Performance Coplanar Xâ€Ray Imaging Applications. Advanced Optical Materials, 2020, 8, 2000814.	7.3	67
15	Highâ€Performance Inverted Perovskite Solar Cells by Reducing Electron Capture Region for Electron Transport Layers. Solar Rrl, 2019, 3, 1900207.	5.8	6
16	Low-temperature-gradient crystallization for multi-inch high-quality perovskite single crystals for record performance photodetectors. Materials Today, 2019, 22, 67-75.	14.2	204
17	PbTiO ₃ as Electronâ€Selective Layer for Highâ€Efficiency Perovskite Solar Cells: Enhanced Electron Extraction via Tunable Ferroelectric Polarization. Advanced Functional Materials, 2019, 29, 1806427.	14.9	23
18	Chelate-Pb Intermediate Engineering for High-Efficiency Perovskite Solar Cells. ACS Applied Materials & 2018, 10, 14744-14750.	8.0	15

#	Article	IF	CITATIONS
19	Low-temperature and facile solution-processed two-dimensional TiS ₂ as an effective electron transport layer for UV-stable planar perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9132-9138.	10.3	78
20	Bifunctional Hydroxylamine Hydrochloride Incorporated Perovskite Films for Efficient and Stable Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 900-909.	5.1	81
21	Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy and Environmental Science, 2018, 11, 3349-3357.	30.8	87
22	Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nature Communications, 2018, 9, 5302.	12.8	212
23	In Situ Grain Boundary Modification via Two-Dimensional Nanoplates to Remarkably Improve Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Enterfaces, 2018, 10, 39802-39808.	8.0	24
24	A 1300 mm ² Ultrahighâ€Performance Digital Imaging Assembly using Highâ€Quality Perovskite Single Crystals. Advanced Materials, 2018, 30, e1707314.	21.0	246
25	Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy. Advanced Materials, 2018, 30, e1801418.	21.0	377
26	High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nature Communications, 2018, 9, 3239.	12.8	1,017
27	Solution-Processed Nb:SnO ₂ Electron Transport Layer for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells. ACS Applied Materials & Solar Cells.	8.0	315
28	CO ₂ Plasma-Treated TiO ₂ Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33989-33996.	8.0	35
29	Effective solvent-additive enhanced crystallization and coverage of absorber layers for high efficiency formamidinium perovskite solar cells. RSC Advances, 2016, 6, 56807-56811.	3. 6	25