Xavier Just-Baringo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8226028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the exfoliation mechanism of pyrene-assisted liquid phase exfoliation of graphene from lateral size-thickness characterisation. Carbon, 2022, 186, 550-559.	5.4	12
2	Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discussions, 2021, 227, 46-60.	1.6	12
3	Controlling Antibacterial Activity Exclusively with Visible Light: Introducing a Tetraâ€ <i>ortho</i> â€Chloroâ€Azobenzene Amino Acid. Chemistry - A European Journal, 2021, 27, 12987-12991.	. 1.7	7
4	Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale, 2020, 12, 12383-12394.	2.8	23
5	Palladium catalysed C–H arylation of pyrenes: access to a new class of exfoliating agents for water-based graphene dispersions. Chemical Science, 2020, 11, 2472-2478.	3.7	10
6	Evidence for Site-Specific Reversible Hydrogen Adsorption on Graphene by Sum-Frequency Generation Spectroscopy and Density Functional Theory. Journal of Physical Chemistry C, 2019, 123, 25883-25889.	1.5	6
7	Charge-tunable graphene dispersions in water made with amphoteric pyrene derivatives. Molecular Systems Design and Engineering, 2019, 4, 503-510.	1.7	13
8	Biocatalytic Conversion of Cyclic Ketones Bearing αâ€Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‧ized Carbocycles. Angewandte Chemie, 2018, 130, 3754-3758.	1.6	13
9	Biocatalytic Conversion of Cyclic Ketones Bearing αâ€Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium‣ized Carbocycles. Angewandte Chemie - International Edition, 2018, 57, 3692-3696.	7.2	32
10	Samarium(II) folding cascades involving hydrogen atom transfer for the synthesis of complex polycycles. Nature Communications, 2018, 9, 4802.	5.8	16
11	Cyclometallated ruthenium catalyst enables late-stage directed arylation of pharmaceuticals. Nature Chemistry, 2018, 10, 724-731.	6.6	124
12	Ketone C–C Bond Activation Meets the Suzuki-Miyaura Cross-coupling. CheM, 2018, 4, 1203-1204.	5.8	4
13	Reduction of Selenoamides to Amines Using Sml ₂ –H ₂ O. Organic Letters, 2017, 19, 50-53.	2.4	8
14	Selective Synthesis of Cyclooctanoids by Radical Cyclization of Sevenâ€Membered Lactones: Neutron Diffraction Study of the Stereoselective Deuteration of a Chiral Organosamarium Intermediate. Angewandte Chemie - International Edition, 2016, 55, 12499-12502.	7.2	19
15	Selective Synthesis of Cyclooctanoids by Radical Cyclization of Sevenâ€Membered Lactones: Neutron Diffraction Study of the Stereoselective Deuteration of a Chiral Organosamarium Intermediate. Angewandte Chemie, 2016, 128, 12687-12690.	1.6	5
16	SmCp ^R ₂ -mediated cross-coupling of allyl and propargyl ethers with ketoesters and a telescoped approach to complex cycloheptanols. Chemical Communications, 2016, 52, 13503-13506.	2.2	15
17	Highly selective Sml2–H2O-promoted radical cyclisation of five-membered lactones. Tetrahedron, 2016, 72, 7691-7698.	1.0	11
18	Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades. Accounts of Chemical Research, 2015, 48, 1263-1275.	7.6	122

XAVIER JUST-BARINGO

#	Article	IF	CITATIONS
19	Overcoming synthetic challenges in target synthesis using SmI2: recent advances. Organometallic Chemistry, 2015, , 1-32.	0.6	5
20	Thiopeptide Antibiotics: Retrospective and Recent Advances. Marine Drugs, 2014, 12, 317-351.	2.2	151
21	Thiopeptide Engineering: A Multidisciplinary Effort towards Future Drugs. Angewandte Chemie - International Edition, 2014, 53, 6602-6616.	7.2	80
22	Dissecting the Structure of Thiopeptides: Assessment of Thiazoline and Tail Moieties of Baringolin and Antibacterial Activity Optimization. Journal of Medicinal Chemistry, 2014, 57, 4185-4195.	2.9	23
23	Chiral Thiazoline and Thiazole Building Blocks for the Synthesis of Peptide- Derived Natural Products. Current Topics in Medicinal Chemistry, 2014, 14, 1244-1256.	1.0	14
24	From 2,6â€Đichloronicotinic Acid to Thiopeptide Cores. European Journal of Organic Chemistry, 2013, 2013, 6404-6419.	1.2	6
25	Total Synthesis and Stereochemical Assignment of Baringolin. Angewandte Chemie - International Edition, 2013, 52, 7818-7821.	7.2	37
26	Total Synthesis of Aeruginazole A. Organic Letters, 2011, 13, 4648-4651.	2.4	18
27	Highly efficient, multigram and enantiopure synthesis of (S)-2-(2,4′-bithiazol-2-yl)pyrrolidine. Tetrahedron Letters, 2011, 52, 5435-5437.	0.7	10
28	EDOTn and MIM, new peptide backbone protecting groups. Biopolymers, 2008, 90, 444-449.	1.2	23
29	Fmoc-2-mercaptobenzothiazole, for the introduction of the Fmoc moiety free of side-reactions. Biopolymers, 2007, 88, 733-737.	1.2	34