Adem KiliÇ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8225378/publications.pdf

Version: 2024-02-01

100 papers

2,128 citations

236833 25 h-index 35 g-index

102 all docs

 $\begin{array}{c} 102 \\ \\ \text{docs citations} \end{array}$

102 times ranked

816 citing authors

#	Article	IF	Citations
1	A Flame-Retardant and Insoluble Inorganic–Organic Hybrid Cathode Material Based on Polyphosphazene with Pyrene-Tetraone for Lithium Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12487-12498.	2.5	14
2	Pyrene-BODIPY-substituted novel water-soluble cyclotriphosphazenes: synthesis, characterization, and photophysical properties. Turkish Journal of Chemistry, 2020, 44, 1-14.	0.5	4
3	Novel Water-Soluble Cyclotriphosphazene-Bodipy Conjugates: Synthesis, Characterization and Photophysical Properties. Journal of Fluorescence, 2019, 29, 1143-1152.	1.3	7
4	Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: Synthesis, photophysical and spectroelectrochemical properties. Inorganica Chimica Acta, 2019, 494, 132-140.	1.2	33
5	NIR BODIPY-Cyclotriphosphazene-Fullerene assemblies: Photophyisical properties and photosensitized generation of singlet oxygen. Dyes and Pigments, 2019, 162, 734-740.	2.0	15
6	Phosphorus-nitrogen compounds. Part 44. The syntheses of N,N-spiro bridged cyclotriphosphazene derivatives with (4-fluorobenzyl) pendant arms: Structural and stereogenic properties, DNA interactions, antimicrobial and cytotoxic activities. Inorganica Chimica Acta, 2019, 486, 172-184.	1.2	28
7	Novel BODIPY-Cyclotriphosphazene- Fullerene triads: Synthesis, characterization and singlet oxygen generation efficiency. Dyes and Pigments, 2018, 153, 26-34.	2.0	16
8	Synthesis and physico-chemical properties of cyclotriphosphazene-BODIPY conjugates. Dyes and Pigments, 2017, 139, 517-523.	2.0	28
9	Hexa-BODIPY Linked-Triazole Based on a Cyclotriphosphazene Core as a Highly Selective and Sensitive Fluorescent Sensor for Fe2+ Ions. Journal of Fluorescence, 2016, 26, 1173-1181.	1.3	41
10	First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor. Biosensors and Bioelectronics, 2016, 80, 331-338.	5. 3	33
11	Reactions of ansa fluorodioxy cyclotriphosphazene derivatives with phenol. Polyhedron, 2014, 81, 777-787.	1.0	8
12	Investigation of the structural properties of 2-naphthylamine substituted cyclotetraphosphazenes. Polyhedron, 2014, 77, 1-9.	1.0	16
13	Synthesis and properties of axially BODIPY conjugated subphthalocyanine dyads. Dyes and Pigments, 2014, 101, 234-239.	2.0	22
14	Intramolecular excimer formation in hexakis(pyrenyloxy)cyclotriphosphazene: photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions, 2014, 43, 3428-3433.	1.6	34
15	Synthesis and spectral properties of a hexameric pyrene-fluorene chromophore based on cyclotriphosphazene. Polyhedron, 2014, 81, 436-441.	1.0	12
16	Structural and fluorescence properties of 2-naphthylamine substituted cyclotriphosphazenes. Inorganica Chimica Acta, 2014, 423, 489-495.	1.2	11
17	Investigation of nucleophilic substitution pathway for the reactions of 1,4-benzodioxan-6-amine with chlorocyclophosphazenes. Inorganica Chimica Acta, 2014, 409, 216-226.	1.2	20
18	Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes. Polyhedron, 2014, 67, 344-350.	1.0	23

#	Article	IF	CITATIONS
19	Fluorenylidene bridged cyclotriphosphazenes: †turn-off†fluorescence probe for Cu2+ and Fe3+ ions. Dalton Transactions, 2013, 42, 14916.	1.6	36
20	Ansa isomer selectivity in the reactions of cyclotetraphosphazene with octafluorohexane-1,6-diol. Polyhedron, 2013, 50, 364-373.	1.0	12
21	Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron, 2013, 69, 1454-1461.	1.0	38
22	Preparation and properties of multi-walled carbon nanotube/poly(organophosphazene) composites. Journal of Materials Science, 2013, 48, 201-212.	1.7	9
23	Nucleophilic substitution reactions of phenolphthalein with different substituted cyclotriphosphazene derivatives. Polyhedron, 2013, 63, 60-67.	1.0	6
24	The synthesis and characterization of 4-isopropylanilino derivatives of cyclotriphosphazene. Inorganica Chimica Acta, 2013, 405, 140-146.	1.2	10
25	Synthesis and characterization of dicoumarol substituted cyclotriphosphazenes. Inorganica Chimica Acta, 2013, 398, 106-112.	1.2	8
26	Synthesis and proton conductivity of azole-substituted cyclic and polymeric phosphazenes. Polymer, 2013, 54, 2250-2256.	1.8	29
27	Cyclotriphosphazene derivatives with three different chiral centres: Synthesis, characterization and investigation of their stereogenic properties. Polyhedron, 2013, 62, 250-259.	1.0	8
28	Synthesis and fluorescence properties of hexameric and octameric subphthalocyanines based cyclic phosphazenes. Dyes and Pigments, 2013, 98, 442-449.	2.0	25
29	Syntheses, characterizations, thermal and photophysical properties of cyclophosphazenes containing adamantane units. Inorganica Chimica Acta, 2013, 399, 219-226.	1.2	13
30	Synthesis and characterization of aryltriphenylsilyl ethers and crystal structure of 2,4,6-tri-methylphenyl triphenylsilyl ether. Journal of Coordination Chemistry, 2013, 66, 1459-1466.	0.8	0
31	Stereo-selectivity in a cyclotriphosphazene derivative bearing an exocyclic P–O moiety. Dalton Transactions, 2012, 41, 6715.	1.6	23
32	Conversion of a Cyclotriphosphazene to a Cyclohexaphosphazene by Ring Expansion. Inorganic Chemistry, 2012, 51, 6434-6436.	1.9	15
33	Investigation of a spiro to ansa rearrangement with di-functional alcohols in cyclotriphosphazene derivatives. Polyhedron, 2012, 43, 176-184.	1.0	16
34	Controlling phosphonic acid substitution degree on proton conducting polyphosphazenes. Polymer, 2012, 53, 3659-3668.	1.8	24
35	Nucleophilic substitution reactions of adamantane derivatives with cyclophosphazenes. Inorganica Chimica Acta, 2012, 387, 226-233.	1.2	16
36	Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. European Journal of Medicinal Chemistry, 2012, 52, 213-220.	2.6	104

#	Article	IF	Citations
37	Competitive formation of cis and trans derivatives in the nucleophilic substitution reactions of cyclophosphazenes having a mono-spiro P–NHR group. Dalton Transactions, 2011, 40, 4959.	1.6	27
38	Enantiotropic conformational polymorphism in 2,2,4,4-bis-(2′,2′-dimethylpropane-1′,3′-dioxy)-6,6-dichlorocyclotriphosphazene. CrystEngComm, 201 4102.	1,113,	6
39	Azole substituted polyphosphazenes as nonhumidified proton conducting membranes. Journal of Materials Chemistry, 2011, 21, 1020-1027.	6.7	22
40	Structural properties of new spiro-1,3-propanediaminocyclotriphosphazene derivatives. Polyhedron, 2011, 30, 2227-2236.	1.0	15
41	Bridged cyclophosphazenes resulting from deprotonation reactions of cyclotriphophazenes bearing a P–NH group. Dalton Transactions, 2011, 40, 5307.	1.6	23
42	Synthesis, thermal and photophysical properties of phenoxy-substituted dendrimeric cyclic phosphazenes. Inorganica Chimica Acta, 2011, 366, 161-172.	1.2	23
43	Synthesis of pyrene endâ€capped A6 dendrimer and star polymer with phosphazene core via "click chemistryâ€. Journal of Polymer Science Part A, 2011, 49, 3193-3206.	2.5	28
44	The investigation of stereogenic properties of cyclotriphosphazene derivatives with two different chiral centres. Polyhedron, 2011, 30, 1587-1594.	1.0	11
45	Synthesis and characterization of soluble multi-walled carbon nanotube/poly(organophosphazene) composites. Polymer, 2011, 52, 1241-1248.	1.8	19
46	Synthesis and Characterization of Novel Alkyl-Substituted Aryl Diphenylphosphinate Esters. Phosphorus, Sulfur and Silicon and the Related Elements, 2011, 186, 1531-1537.	0.8	13
47	Synthesis and properties of axially-phenoxycyclotriphosphazenyl substituted silicon phthalocyanine. Polyhedron, 2010, 29, 675-682.	1.0	32
48	The new dispirobino and dispiroansa spermine derivatives of cyclotriphosphazenes. Polyhedron, 2010, 29, 1209-1218.	1.0	14
49	Structural and thermosensitive properties of novel octopus shape cyclotriphosphazenes. Polyhedron, 2010, 29, 2516-2521.	1.0	10
50	Fluorescent aminoarylcyclotetraphosphazenes. Polyhedron, 2010, 29, 2609-2618.	1.0	19
51	Spiro, ansa-derivatives of cyclotetraphosphazenes with a tetrafluorobutane-1,4-diol. Polyhedron, 2010, 29, 3220-3228.	1.0	22
52	The investigation of structural and thermosensitive properties of new phosphazene derivative bearing glycol and aminoalcohol. Inorganica Chimica Acta, 2010, 363, 3721-3726.	1.2	10
53	Effect of gem 2,2′-disubstitution and base in the formation of spiro- and ansa-1,3-propandioxy derivatives of cyclotriphosphazenes. Inorganica Chimica Acta, 2010, 363, 3506-3515.	1.2	19
54	Synthesis, characterization, electrochromic properties, and electrochromic device application of a novel star polymer consisting of thiophene endâ \in capped poly(εâ \in caprolactone) arms emanating from a hexafunctional cyclotriphosphazene core. Journal of Polymer Science Part A, 2010, 48, 3668-3682.	2.5	25

#	Article	IF	Citations
55	Comparison of photophysicochemical properties of hexaphenoxycyclotriphosphazenyl-substituted metal-free, mono- and bis-lutetium phthalocyanines. Synthetic Metals, 2010, 160, 436-444.	2.1	25
56	Phosphorusâ^'Nitrogen Compounds. 21. Syntheses, Structural Investigations, Biological Activities, and DNA Interactions of New N/O Spirocyclic Phosphazene Derivatives. The NMR Behaviors of Chiral Phosphazenes with Stereogenic Centers upon the Addition of Chiral Solvating Agents. Inorganic Chemistry, 2010, 49, 7057-7071.	1.9	73
57	Formation of novel spiro, spiroansa and dispiroansa derivatives of cyclotetraphosphazene from the reactions of polyfunctional amines with octachlorocyclotetraphosphazatetraene. Journal of Chemical Sciences, 2009, 121, 125-135.	0.7	23
58	Absolute structure determination as a reference for the enantiomeric resolution of racemic mixtures of cyclophosphazenes <i>via</i> chiral high-performance liquid chromatography. Acta Crystallographica Section B: Structural Science, 2009, 65, 355-362.	1.8	21
59	Synthesis and enantiomeric analysis of cyclotriphosphazene derivatives with one centre of chirality. Inorganica Chimica Acta, 2009, 362, 4931-4936.	1.2	22
60	The synthesis, thermal and photophysical properties of phenoxycyclotriphosphazenyl-substituted cyclic and polymeric phosphazenes. Polyhedron, 2009, 28, 2510-2516.	1.0	45
61	The reaction of thiophenoxide with amino-substituted chloro-cyclotriphosphazenes. Polyhedron, 2009, 28, 2863-2870.	1.0	17
62	Single-, double- and triple-bridged derivatives of cyclotriphosphazenes with an octafluorohexane-1,6-diol. Polyhedron, 2009, 28, 3593-3599.	1.0	30
63	Structural and fluorescence properties of phenolphthalein bridged cyclotriphosphazatrienes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2009, 74, 881-886.	2.0	18
64	A cis-directing effect towards diols by an exocyclic P-NHR moiety in cyclotriphosphazenes. Inorganic Chemistry Communication, 2009, 12, 773-777.	1.8	16
65	The synthesis, spectroscopic and thermal properties of phenoxycyclotriphosphazenyl-substituted phthalocyanines. Dyes and Pigments, 2008, 79, 14-23.	2.0	34
66	Stable Pâ^'N Bridged Cyclophosphazenes with a Spiro or Ansa Arrangement. Inorganic Chemistry, 2008, 47, 5042-5044.	1.9	27
67	A spiro to ansa rearrangement in cyclotriphosphazene derivatives. Dalton Transactions, 2007, , 2792-2801.	1.6	23
68	Stereogenic properties of spiranes combined with four equivalent conventional centres of chirality. Dalton Transactions, 2007, , 2040-2047.	1.6	14
69	Formation of spiro and ansa derivatives in the reaction of 2,2,3,3,4,4-hexafluoropentane-1,5-diol with cyclotriphosphazene: Comparison with 2,2,3,3-tetrafluorobutane-1,4-diol. Polyhedron, 2007, 26, 5283-5292.	1.0	32
70	Stereogenic properties of spiranes combined with one or two equivalent conventional centres of chirality. Journal of Organometallic Chemistry, 2007, 692, 2811-2821.	0.8	18
71	Dimorphism in 4,4,6,6-tetrachloro-2,2-(2,2-dimethylpropane-1,3-dioxy)cyclotriphosphazene and 6,6-dichloro-2,2:4,4-bis(2,2-dimethylpropane-1,3-dioxy)cyclotriphosphazene. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, o152-o156.	0.4	6

^{4,4,6,6-}Tetrachloro-2-[(2,4-dimethylphenyl)sulfanyl]-<i>N</i>-[4-(2,2,4,4-tetrachloro-1,3,5,7,11-pentaaza-2l̂»⁵,4l̂y*⁵,4l̂y*⁵,5</sup>,5</sup>,5</sup>,6</sup>,6</sup>,6</sup>,6</sup>,7</sup>,7</sup>,7</sup>,7</sup>,9</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1</sup>,1

#	Article	lF	CITATIONS
73	Characterisation of temperature-dependent phase transitions in 2,2-trimethylenedioxy-4,4,6,6-tetrachlorocyclotriphosphazene, N3P3Cl4[O(CH2)3O]. Chemistry Central Journal, 2007, 1, 20.	2.6	2
74	The Reactions of Phenoxy Substituted Phosphazenes with 1,3-Propanediol and 3-Amino-1-propanol. Heterocycles, 2007, 71, 281.	0.4	5
75	The structural and stereogenic properties of pentaerythritoxy-bridged cyclotriphosphazene derivatives: spiro–spiro, spiro–ansa and ansa–ansa isomers. Dalton Transactions, 2006, , 1302-1312.	1.6	39
76	Structural investigations of phosphorus–nitrogen compounds. 7. Relationships between physical properties, electron densities, reaction mechanisms and hydrogen-bonding motifs of N3P3Cl(6â€â^3€n)(NHBu t) n derivatives. Acta Crystallographica Section B: Structural Science, 2006, 62, 321-329.	1.8	34
77	Comparison of high-performance liquid chromatography of cyclotriphosphazene derivatives with one or two equivalent stereogenic centres. Journal of Chromatography A, 2006, 1132, 201-205.	1.8	15
78	Structural and stereogenic properties of spiro- and ansa-substituted 1,3-propanedioxy derivatives of a spermine-bridged cyclotriphosphazene. Polyhedron, 2006, 25, 953-962.	1.0	26
79	Competitive formation of spiro and ansa derivatives in the reactions of tetrafluorobutane-1,4-diol with hexachlorocyclotriphosphazene: A comparison with butane-1,4-diol. Polyhedron, 2006, 25, 963-974.	1.0	42
80	The reactions of hexachlorocyclotriphosphazatriene with pyridine derivatives. Heteroatom Chemistry, 2006, 17, 57-60.	0.4	11
81	Stereoisomerism in Pentaerythritol-Bridged Cyclotriphosphazene Tri-Spiranes: Spiro and Ansa 1,3-Propanediyldioxy Disubstituted Derivatives. European Journal of Inorganic Chemistry, 2005, 2005, 1042-1047.	1.0	20
82	Phenolysis of hexachlorocyclotriphosphazatriene. Heteroatom Chemistry, 2005, 16, 308-310.	0.4	18
83	Chiral separation and CD characterisation of enantiomeric cyclotriphosphazene derivatives. Chirality, 2005, 17, 438-443.	1.3	21
84	Structural investigations of phosphorus–nitrogen compounds. 6. Relationships between molecular parameters in per-X-substituted bridged spermine derivatives and basicity constants ΣαR of substituents. Acta Crystallographica Section B: Structural Science, 2004, 60, 739-747.	1.8	9
85	Chiral Configurations of Spirane-Bridged Cyclotriphosphazenes. European Journal of Organic Chemistry, 2004, 2004, 1881-1886.	1.2	20
86	Retention of Configuration in the Nucleophilic Substitution Reactions of Some Nine-Membered Ansa Derivatives of Cyclotriphosphazatriene. Chemistry - A European Journal, 2004, 10, 4915-4920.	1.7	30
87	Stereogenic properties of 1,3-disubstituted derivatives of cyclotriphosphazene: cis (meso) and trans (racemic) isomers. Inorganic Chemistry Communication, 2004, 7, 657-661.	1.8	30
88	Chirality in cyclotriphosphazenes with one stereogenic centre. Inorganic Chemistry Communication, 2004, 7, 842-846.	1.8	17
89	Anomalous NMR Behavior of Meso Compounds with Remote Stereogenic Centers on Addition of Chiral Shift Reagent or Chiral Solvating Agent. Journal of the American Chemical Society, 2003, 125, 4943-4950.	6.6	62
90	The Synthesis and Characterization of Cycloalkoxy-Linear Phosphazenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2003, 178, 2097-2105.	0.8	18

#	Article	IF	CITATIONS
91	Chiral configurations of spermine-bridged cyclotriphosphazatrienes. Dalton Transactions RSC, 2002, , 365-370.	2.3	36
92	Conformational polymorphism in a chiral spiro-cis-ansa-bridged cyclotriphosphazene derivative. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, o51-o54.	0.4	3
93	Structural investigations of phosphorus–nitrogen compounds. 4. Steric and electronic effects in dibenzylamino derivatives of hexachlorocyclotriphosphazatriene and 4,4,6,6-tetrachloro-2,2-diphenylcyclotriphosphazatriene. Acta Crystallographica Section B: Structural Science. 2002. 58. 545-552.	1.8	20
94	Structural investigations of phosphorus–nitrogen compounds. 5. Relationships between molecular parameters of 2,2-diphenyl-4,6-cis-oxytetra(ethyleneoxy)-4,6-R 2-cyclotriphosphazatrienes (R = Cl,) Tj ETQq0 0 0 rg	gBT/Overl	ogk 10 Tf 50
95	Section B: Structural Science, 2002, 58, 1067-1073. Crystal Structure of 2,4,4,6,6-Pentachloro-2-(2,4,6-trimethylphenoxy)cyclo-2.LAMBDA.5,4.LAMBDA.5,6.LAMBDA.5-triphosphazatriene. Analytical Sciences, 2000, 16, 101-102.	. 0.8	7
96	N-[Bis(2,4,6-trimethylphenoxy)phosphinoyl]-P,P,P-tris(2,4,6-trimethylphenoxy)phosphazene. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1404-1406.	0.4	4
97	Unusual products in the reactions of hexachlorocyclotriphosphazatriene with sodium aryloxides. Heteroatom Chemistry, 1996, 7, 249-256.	0.4	48
98	PHOSPHORUS-NITROGEN COMPOUNDS. PART 72.1THE REACTIONS OF OCTACHLOROCYCLOTETRA-PHOSPHAZATETRAENE WITH SPERMIDINE AND SPERMINE. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 57, 111-117.	0.8	25
99	PHOSPHORUS-NITROGEN COMPOUNDS. PART 67.1THE REACTIONS OF OCTACHLOROCYCLO-TETRAPHOSPHAZATETRAENE WITH DIETHYL BIS(HYDROXYMETHYL)MALONATE. COMPARISON OF PRODUCT TYPE AND OF THE31P,1H AND13C NUCLEAR MAGNETIC RESONANCE SPECTRA WITH THOSE OF THE DERIVATIVES OF PROPANE-1,3-DIOL. Phosphorus,	0.8	3
100	PHOSPHORUS-NITROGEN COMPOUNDS. PART 70.1AMINOLYSIS OFP-TRICHLORO-N-DICHLOROPHOSPHORYLMONOPHOSPHAZENE, C13P=N-P(O)Cl2. Phosphorus, Sulfur and Silicon and the Related Elements, 1991, 56, 157-164.	0.8	13