Geert van den Bogaart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8225089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane protein sequestering by ionic protein–lipid interactions. Nature, 2011, 479, 552-555.	27.8	515
2	Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods, 2013, 59, 301-315.	3.8	501
3	LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis. Neuron, 2012, 75, 1008-1021.	8.1	312
4	Lateral Diffusion of Membrane Proteins. Journal of the American Chemical Society, 2009, 131, 12650-12656.	13.7	293
5	Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature Structural and Molecular Biology, 2013, 20, 679-686.	8.2	246
6	One SNARE complex is sufficient for membrane fusion. Nature Structural and Molecular Biology, 2010, 17, 358-364.	8.2	233
7	On the Mechanism of Pore Formation by Melittin. Journal of Biological Chemistry, 2008, 283, 33854-33857.	3.4	163
8	Distribution, Lateral Mobility and Function of Membrane Proteins Incorporated into Giant Unilamellar Vesicles. Biophysical Journal, 2005, 88, 1134-1142.	0.5	132
9	Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains. Nature Communications, 2015, 6, 5984.	12.8	130
10	Long Unfolded Linkers Facilitate Membrane Protein Import Through the Nuclear Pore Complex. Science, 2011, 333, 90-93.	12.6	128
11	Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature Structural and Molecular Biology, 2011, 18, 805-812.	8.2	125
12	The tetraspanin web revisited by super-resolution microscopy. Scientific Reports, 2015, 5, 12201.	3.3	123
13	Modulation of Immune Responses by Particle Size and Shape. Frontiers in Immunology, 2020, 11, 607945.	4.8	122
14	Lipid peroxidation causes endosomal antigen release for cross-presentation. Scientific Reports, 2016, 6, 22064.	3.3	120
15	Phosphatidylinositol 4,5-Bisphosphate Increases Ca2+ Affinity of Synaptotagmin-1 by 40-fold. Journal of Biological Chemistry, 2012, 287, 16447-16453.	3.4	112
16	Antigen Cross-Presentation by Macrophages. Frontiers in Immunology, 2020, 11, 1276.	4.8	102
17	Molecular sieving properties of the cytoplasm of <i>Escherichia coli</i> and consequences of osmotic stress. Molecular Microbiology, 2010, 77, 200-207.	2.5	100
18	Synaptic PI(3,4,5)P3 Is Required for Syntaxin1A Clustering and Neurotransmitter Release. Neuron, 2013, 77, 1097-1108.	8.1	91

#	Article	IF	CITATIONS
19	CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation. American Journal of Human Genetics, 2016, 98, 310-321.	6.2	88
20	Protein mobility and diffusive barriers inEscherichia coli: consequences of osmotic stress. Molecular Microbiology, 2007, 64, 858-871.	2.5	82
21	TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation. American Journal of Human Genetics, 2016, 98, 322-330.	6.2	73
22	Single-vesicle imaging reveals different transport mechanisms between glutamatergic and GABAergic vesicles. Science, 2016, 351, 981-984.	12.6	72
23	On the Decrease in Lateral Mobility of Phospholipids by Sugars. Biophysical Journal, 2007, 92, 1598-1605.	0.5	71
24	Podosomes of dendritic cells facilitate antigen sampling. Journal of Cell Science, 2014, 127, 1052-1064.	2.0	71
25	Controlling synaptotagmin activity by electrostatic screening. Nature Structural and Molecular Biology, 2012, 19, 991-997.	8.2	69
26	Endosomal and Phagosomal SNAREs. Physiological Reviews, 2018, 98, 1465-1492.	28.8	68
27	Dual-Color Fluorescence-Burst Analysis to Probe Protein Efflux through the Mechanosensitive Channel MscL. Biophysical Journal, 2007, 92, 1233-1240.	0.5	67
28	Quaternary Structure of SecA in Solution and Bound to SecYEG Probed at the Single Molecule Level. Structure, 2011, 19, 430-439.	3.3	63
29	<i>Cis</i> - and <i>trans</i> -membrane interactions of synaptotagmin-1. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11037-11042.	7.1	61
30	SNARE derived peptide mimic inducing membrane fusion. Chemical Communications, 2011, 47, 9405.	4.1	54
31	SWAP70 Organizes the Actin Cytoskeleton and Is Essential for Phagocytosis. Cell Reports, 2016, 17, 1518-1531.	6.4	53
32	The Lipid Dependence of Melittin Action Investigated by Dual-Color Fluorescence Burst Analysis. Biophysical Journal, 2007, 93, 154-163.	0.5	51
33	Oxygen in the tumor microenvironment: effects on dendritic cell function. Oncotarget, 2019, 10, 883-896.	1.8	51
34	Probing Receptor-Translocator Interactions in the Oligopeptide ABC Transporter by Fluorescence Correlation Spectroscopy. Biophysical Journal, 2008, 94, 3956-3965.	0.5	49
35	Catestatin as a Target for Treatment of Inflammatory Diseases. Frontiers in Immunology, 2018, 9, 2199.	4.8	47
36	Interleukin-6 secretion is limited by self-signaling in endosomes. Journal of Molecular Cell Biology, 2019, 11, 144-157.	3.3	44

#	Article	IF	CITATIONS
37	Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells, 2019, 8, 780.	4.1	42
38	Human Monocyte-Derived Dendritic Cells Produce Millimolar Concentrations of ROS in Phagosomes Per Second. Frontiers in Immunology, 2019, 10, 1216.	4.8	42
39	Quantum Sensing of Free Radicals in Primary Human Dendritic Cells. Nano Letters, 2022, 22, 1818-1825.	9.1	42
40	The Phosphoinositide Kinase PIKfyve Promotes Cathepsin-S-Mediated Major Histocompatibility Complex Class II Antigen Presentation. IScience, 2019, 11, 160-177.	4.1	41
41	VAMP8-mediated NOX2 recruitment to endosomes is necessary for antigen release. European Journal of Cell Biology, 2017, 96, 705-714.	3.6	40
42	Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Human Molecular Genetics, 2018, 27, 3029-3045.	2.9	37
43	Transmembrane Helices Are an Overlooked Source of Major Histocompatibility Complex Class I Epitopes. Frontiers in Immunology, 2017, 8, 1118.	4.8	36
44	Oxidized phagosomal NOX2 is replenished from lysosomes. Journal of Cell Science, 2017, 130, 1285-1298.	2.0	35
45	Tetraspanin microdomains control localized protein kinase C signaling in B cells. Science Signaling, 2017, 10, .	3.6	35
46	Microdomains of SNARE Proteins in the Plasma Membrane. Current Topics in Membranes, 2013, 72, 193-230.	0.9	34
47	Ethylene, an early marker of systemic inflammation in humans. Scientific Reports, 2017, 7, 6889.	3.3	32
48	Hypoxia potentiates monocyte-derived dendritic cells for release of tumor necrosis factor α via MAP3K8. Bioscience Reports, 2018, 38, .	2.4	31
49	Immunosuppression of Macrophages Underlies the Cardioprotective Effects of CST (Catestatin). Hypertension, 2021, 77, 1670-1682.	2.7	31
50	The PIKfyve Inhibitor Apilimod: A Double-Edged Sword against COVID-19. Cells, 2021, 10, 30.	4.1	30
51	Counting the SNAREs needed for membrane fusion. Journal of Molecular Cell Biology, 2011, 3, 204-205.	3.3	29
52	Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 2016, 291, 7868-7876.	3.4	29
53	Dual-color fluorescence-burst analysis to study pore formation and protein–protein interactions. Methods, 2008, 46, 123-130.	3.8	25
54	Sugary Logistics Gone Wrong: Membrane Trafficking and Congenital Disorders of Glycosylation. International Journal of Molecular Sciences, 2020, 21, 4654.	4.1	24

#	Article	IF	CITATIONS
55	Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types. Frontiers in Immunology, 2020, 11, 605958.	4.8	23
56	The dendritic cell side of the immunological synapse. Biomolecular Concepts, 2016, 7, 17-28.	2.2	22
57	Fluorescence Lifetime Imaging Microscopy reveals rerouting of SNARE trafficking driving dendritic cell activation. ELife, 2017, 6, .	6.0	21
58	T cell cholesterol efflux suppresses apoptosis and senescence and increases atherosclerosis in middle aged mice. Nature Communications, 2022, 13, .	12.8	21
59	Chasing Uptake: Super-Resolution Microscopy in Endocytosis and Phagocytosis. Trends in Cell Biology, 2019, 29, 727-739.	7.9	20
60	Membrane trafficking as an active regulator of constitutively secreted cytokines. Journal of Cell Science, 2020, 133, .	2.0	20
61	Chromogranin A regulates gut permeability <i>via</i> the antagonistic actions of its proteolytic peptides. Acta Physiologica, 2021, 232, e13655.	3.8	20
62	Nuclear transport factor directs localization of protein synthesis during mitosis. Nature Cell Biology, 2009, 11, 350-356.	10.3	19
63	Evaluation of Pulsed-FRAP and Conventional-FRAP for Determination of Protein Mobility in Prokaryotic Cells. PLoS ONE, 2011, 6, e25664.	2.5	18
64	Radical Stress Is More Cytotoxic in the Nucleus than in Other Organelles. International Journal of Molecular Sciences, 2019, 20, 4147.	4.1	16
65	What makes (hydroxy)chloroquine ineffective against COVID-19: insights from cell biology. Journal of Molecular Cell Biology, 2021, 13, 175-184.	3.3	15
66	The Roles of Phospholipase A2 in Phagocytes. Frontiers in Cell and Developmental Biology, 2021, 9, 673502.	3.7	15
67	Congenital disorder of glycosylation caused by starting site-specific variant in syntaxin-5. Nature Communications, 2021, 12, 6227.	12.8	14
68	Fluorescence Lifetime Imaging of pH along the Secretory Pathway. ACS Chemical Biology, 2022, 17, 240-251.	3.4	12
69	Editorial: Membrane domains as new drug targets. Frontiers in Physiology, 2015, 6, 172.	2.8	11
70	Visualizing Intracellular SNARE Trafficking by Fluorescence Lifetime Imaging Microscopy. Journal of Visualized Experiments, 2017, , .	0.3	11
71	Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell and Tissue Research, 2019, 376, 51-70.	2.9	11
72	Purification and Functional Reconstitution of the Bacterial Protein Translocation Pore, the SecYEG Complex. Methods in Molecular Biology, 2010, 619, 131-143.	0.9	10

Geert van den Bogaart

#	Article	IF	CITATIONS
73	SWAP70 is a universal GEF-like adaptor for tethering actin to phagosomes. Small GTPases, 2017, 10, 1-12.	1.6	9
74	Secretory vesicles of immune cells contain only a limited number of interleukin 6 molecules. FEBS Letters, 2018, 592, 1535-1544.	2.8	9
75	Vacuolar escape of foodborne bacterial pathogens. Journal of Cell Science, 2021, 134, jcs247221.	2.0	9
76	Catestatin induces glycogenesis by stimulating the phosphoinositide 3â€kinaseâ€AKT pathway. Acta Physiologica, 2022, 235, e13775.	3.8	9
77	Novel and conventional inhibitors of canonical autophagy differently affect LC3â€associated phagocytosis. FEBS Letters, 2022, 596, 491-509.	2.8	9
78	Putative regulation of macrophage-mediated inflammation by catestatin. Trends in Immunology, 2022, 43, 41-50.	6.8	7
79	The oligomeric state and stability of the mannitol transporter, EnzymelImtl, fromEscherichia coli: A fluorescence correlation spectroscopy study. Protein Science, 2006, 15, 1977-1986.	7.6	6
80	Hypoxia and TLR9 activation drive CXCL4 production in systemic sclerosis plasmacytoid dendritic cells via mtROS and HIF-21±. Rheumatology, 2022, 61, 2682-2693.	1.9	6
81	Inside insight to membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11729-11730.	7.1	5
82	Chemogenetic Tags with Probe Exchange for Live-Cell Fluorescence Microscopy. ACS Chemical Biology, 2021, 16, 891-904.	3.4	5
83	The anti-inflammatory peptide Catestatin blocks chemotaxis. Journal of Leukocyte Biology, 2022, 112, 273-278.	3.3	5
84	Mitochondrial interaction of fibrosis-protective 5-methoxy tryptophan enhances collagen uptake by macrophages. Free Radical Biology and Medicine, 2022, 188, 287-297.	2.9	5
85	Reaching for far-flung antigen: How solid-core podosomes of dendritic cells transform into protrusive structures. Communicative and Integrative Biology, 2014, 7, e9709611.	1.4	4
86	Assembling anisotropic colloids using curvature-mediated lipid sorting. Soft Matter, 2022, 18, 1757-1766.	2.7	3
87	Transmembrane Helices Are an Over-Presented and Evolutionarily Conserved Source of Major Histocompatibility Complex Class I and II Epitopes. Frontiers in Immunology, 2021, 12, 763044.	4.8	2
88	Quantitative Microscopy of SNARE Complexes in Live Cells. Biophysical Journal, 2018, 114, 9a-10a.	0.5	0
89	Catestatin Improves Insulin Sensitivity by Promoting M1â€M2 Polarization and Inhibiting Obesityâ€Induced Macrophage Infiltration and Gluconeogenesis in Liver. FASEB Journal, 2019, 33, 834.13.	0.5	0
90	Editorial: Signaling Proteins for Endosomal and Lysosomal Function. Frontiers in Cell and Developmental Biology, 2021, 9, 821719.	3.7	0

#	Article	IF	CITATIONS
91	LC3-associated phagocytosis: a sorting mechanism for ubiquitinated membrane proteins?. , 2022, 1, 25-28.		0