
Xiao-Dong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224848/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Stable Layered Oxide Cathode Material for Highâ€Performance Sodiumâ€Ion Battery. Advanced Energy Materials, 2019, 9, 1803978.	10.2	191
2	Improving cycling performance and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by Li4Ti5O12 coating. Electrochimica Acta, 2018, 268, 358-365.	2.6	186
3	Na-doped Ni-rich LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ cathode material with both high rate capability and high tap density for lithium ion batteries. Dalton Transactions, 2014, 43, 14824-14832.	1.6	180
4	Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization. Energy and Environmental Science, 2021, 14, 2244-2262.	15.6	177
5	Highâ€Abundance and Lowâ€Cost Metalâ€Based Cathode Materials for Sodiumâ€Ion Batteries: Problems, Progress, and Key Technologies. Advanced Energy Materials, 2019, 9, 1803609.	10.2	176
6	Polyanion and cation co-doping stabilized Ni-rich Ni–Co–Al material as cathode with enhanced electrochemical performance for Li-ion battery. Nano Energy, 2019, 63, 103818.	8.2	164
7	Construction of homogeneously Al3+ doped Ni rich Ni-Co-Mn cathode with high stable cycling performance and storage stability via scalable continuous precipitation. Electrochimica Acta, 2018, 291, 84-94.	2.6	163
8	Carbonâ€Coated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535	11.1	161
9	Exposing {010} Active Facets by Multipleâ€Layer Oriented Stacking Nanosheets for Highâ€Performance Capacitive Sodiumâ€Ion Oxide Cathode. Advanced Materials, 2018, 30, e1803765.	11.1	142
10	Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 16629-16638.	4.0	142
11	Layered Oxide Cathodes Promoted by Structure Modulation Technology for Sodiumâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2001334.	7.8	142
12	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
13	Core–Shell MOF@COF Motif Hybridization: Selectively Functionalized Precursors for Titanium Dioxide Nanoparticle-Embedded Nitrogen-Rich Carbon Architectures with Superior Capacitive Deionization Performance. Chemistry of Materials, 2021, 33, 1657-1666.	3.2	121
14	A Layered–Tunnel Intergrowth Structure for Highâ€Performance Sodiumâ€Ion Oxide Cathode. Advanced Energy Materials, 2018, 8, 1800492.	10.2	116
15	A Novel NASICONâ€Typed Na ₄ VMn _{0.5} Fe _{0.5} (PO ₄) ₃ Cathode for Highâ€Performance Naâ€Ion Batteries. Advanced Energy Materials, 2021, 11, 2100729.	10.2	108
16	FeP nanorod arrays on carbon cloth: a high-performance anode for sodium-ion batteries. Chemical Communications, 2018, 54, 9341-9344.	2.2	106
17	Synergy of doping and coating induced heterogeneous structure and concentration gradient in Ni-rich cathode for enhanced electrochemical performance. Journal of Power Sources, 2019, 423, 144-151.	4.0	106
18	Design and Synthesis of Layered Na ₂ Ti ₃ O ₇ and Tunnel Na ₂ Ti ₆ O ₁₃ Hybrid Structures with Enhanced Electrochemical Behavior for Sodiumâ€lon Batteries. Advanced Science, 2018, 5, 1800519.	5.6	102

#	Article	IF	CITATIONS
19	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	5.2	102
20	Construction of 3D pomegranate-like Na ₃ V ₂ (PO ₄) ₃ /conducting carbon composites for high-power sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 9833-9841.	5.2	101
21	Development and Investigation of a NASICONâ€Type Highâ€Voltage Cathode Material for Highâ€Power Sodiumâ€ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 2449-2456.	7.2	101
22	Cu ²⁺ Dual-Doped Layer-Tunnel Hybrid Na _{0.6} Mn _{1–<i>x</i>} Cu _{<i>x</i>} O ₂ as a Cathode of Sodium-Ion Battery with Enhanced Structure Stability, Electrochemical Property, and Air Stability. ACS Applied Materials & Interfaces, 2018, 10, 10147-10156.	4.0	98
23	Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 2022, 7, 97-107.	8.8	91
24	Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Materials, 2019, 19, 163-178.	9.5	90
25	Organic Cross‣inker Enabling a 3D Porous Skeleton–Supported Na ₃ V ₂ (PO ₄) ₃ /Carbon Composite for High Power Sodiumâ€Ion Battery Cathode. Small Methods, 2019, 3, 1800169.	4.6	87
26	Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries. Journal of Power Sources, 2015, 275, 200-206.	4.0	84
27	Insight into Preparation of Fe-Doped Na ₃ V ₂ (PO ₄) ₃ @C from Aspects of Particle Morphology Design, Crystal Structure Modulation, and Carbon Graphitization Regulation. ACS Applied Materials & Interfaces, 2019, 11, 12421-12430.	4.0	84
28	N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. Journal of Colloid and Interface Science, 2021, 585, 43-50.	5.0	81
29	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. ACS Applied Materials & Interfaces, 2020, 12, 10240-10251.	4.0	80
30	K-doped layered LiNi 0.5 Co 0.2 Mn 0.3 O 2 cathode material: Towards the superior rate capability and cycling performance. Journal of Alloys and Compounds, 2017, 699, 358-365.	2.8	79
31	Deciphering an Abnormal Layeredâ€īunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie - International Edition, 2020, 59, 1491-1495.	7.2	78
32	Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Liâ€Rich Layered Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ Oxides. Advanced Energy Materials, 2019, 9, 1803094.	10.2	78
33	Effect of niobium doping on the structure and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathode materials for lithium ion batteries. Ceramics International, 2017, 43, 3866-3872.	2.3	76
34	Dual-site lattice modification regulated cationic ordering for Ni-rich cathode towards boosted structural integrity and cycle stability. Chemical Engineering Journal, 2021, 403, 126314.	6.6	75
35	Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. Journal of Alloys and Compounds, 2016, 688, 790-797.	2.8	67
36	Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. Journal of Materials Chemistry A, 2017, 5, 25391-25400.	5.2	67

#	Article	IF	CITATIONS
37	A Simple Gas–Solid Treatment for Surface Modification of Liâ€Rich Oxides Cathodes. Angewandte Chemie - International Edition, 2021, 60, 23248-23255.	7.2	66
38	A review of cathode materials in lithium-sulfur batteries. Ionics, 2020, 26, 5299-5318.	1.2	65
39	Reversible Activation of V ⁴⁺ /V ⁵⁺ Redox Couples in NASICON Phosphate Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	65
40	Enhancing performance of Li–S batteries by coating separator with MnO @ yeast-derived carbon spheres. Journal of Alloys and Compounds, 2020, 817, 152723.	2.8	62
41	A comparative study of crystalline and amorphous Li0.5La0.5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0.815Co0.15Al0.035O2 cathode. Journal of Alloys and Compounds, 2018, 740, 428-435.	2.8	61
42	Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3(OH)2 and their application as precursors for high-power cathode materials. Electrochimica Acta, 2017, 232, 123-131.	2.6	60
43	Mn-Based Cathode with Synergetic Layered-Tunnel Hybrid Structures and Their Enhanced Electrochemical Performance in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21267-21275.	4.0	60
44	Enhanced sodium storage property of sodium vanadium phosphate via simultaneous carbon coating and Nb5+ doping. Chemical Engineering Journal, 2020, 386, 123953.	6.6	59
45	Chemical and Structural Evolution during the Synthesis of Layered Li(Ni,Co,Mn)O ₂ Oxides. Chemistry of Materials, 2020, 32, 4984-4997.	3.2	58
46	Promoting the electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode via LaAlO3 coating. Journal of Alloys and Compounds, 2018, 766, 546-555.	2.8	57
47	Hydrangeaâ€Like CuS with Irreversible Amorphization Transition for Highâ€Performance Sodiumâ€lon Storage. Advanced Science, 2020, 7, 1903279.	5.6	57
48	SiO <i>_x</i> Anode: From Fundamental Mechanism toward Industrial Application. Small, 2021, 17, e2102641.	5.2	57
49	Dual Elements Coupling Effect Induced Modification from the Surface into the Bulk Lattice for Ni-Rich Cathodes with Suppressed Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 8146-8156.	4.0	56
50	Mo ₂ C-Embedded Carambola-like N,S-Rich Carbon Framework as the Interlayer Material for High-Rate Lithium–Sulfur Batteries in a Wide Temperature Range. ACS Applied Materials & Interfaces, 2020, 12, 22971-22980.	4.0	56
51	Structural Reconstruction Driven by Oxygen Vacancies in Layered Niâ€Rich Cathodes. Advanced Energy Materials, 2022, 12, .	10.2	53
52	Cauliflower-like MnO@C/N composites with multiscale, expanded hierarchical ordered structures as electrode materials for Lithium- and Sodium-ion batteries. Electrochimica Acta, 2017, 246, 931-940.	2.6	49
53	Integrating Multiâ€Heterointerfaces in a 1D@2D@1D Hierarchical Structure via Autocatalytic Pyrolysis for Ultraâ€Efficient Microwave Absorption Performance. Small, 2022, 18, e2105411.	5.2	47
54	Nitrogen-doped sheet VO2 modified separator to enhanced long-cycle performance lithium-sulfur battery. Journal of Power Sources, 2021, 501, 230040.	4.0	46

#	Article	IF	CITATIONS
55	Nickelâ€Rich Layered Cathode Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, 4249-4269.	1.7	44
56	The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li–S batteries. Green Chemistry, 2021, 23, 942-950.	4.6	43
57	Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode. Advanced Science, 2019, 6, 1801908.	5.6	41
58	A Ge/Carbon Atomicâ€Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie - International Edition, 2021, 60, 12539-12546.	7.2	41
59	Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage. Journal of Materials Chemistry A, 2020, 8, 8049-8057.	5.2	38
60	Recent advance in structure regulation of highâ€capacity Niâ€rich layered oxide cathodes. EcoMat, 2021, 3, e12141.	6.8	38
61	A MnS/FeS ₂ heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage. Journal of Materials Chemistry A, 2021, 9, 24024-24035.	5.2	38
62	Compared investigation of carbon-decorated Na3V2(PO4)3 with saccharides of different molecular weights as cathode of sodium ion batteries. Electrochimica Acta, 2018, 286, 231-241.	2.6	37
63	Boosting the reactivity of Ni2+/Ni3+ redox couple via fluorine doping of high performance Na0.6Mn0.95Ni0.05O2-F cathode. Electrochimica Acta, 2019, 308, 64-73.	2.6	37
64	Poly(ethylene oxide)/Poly(vinylidene ï¬,uoride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries. Journal of Power Sources, 2020, 472, 228461.	4.0	37
65	Research progress in O3-type phase Fe/Mn/Cu-based layered cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2022, 10, 3869-3888.	5.2	36
66	Ni ₂ P Nanosheets on Carbon Cloth: An Efficient Flexible Electrode for Sodium-Ion Batteries. Inorganic Chemistry, 2019, 58, 6579-6583.	1.9	35
67	Insight into the Origin of Capacity Fluctuation of Na ₂ Ti ₆ O ₁₃ Anode in Sodium Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 43596-43602.	4.0	34
68	Review of the application of biomass-derived porous carbon in lithium-sulfur batteries. Ionics, 2020, 26, 4765-4781.	1.2	34
69	Structural elucidation of the degradation mechanism of nickel-rich layered cathodes during high-voltage cycling. Chemical Communications, 2020, 56, 4886-4889.	2.2	34
70	A Unique Structure of Highly Stable Interphase and Selfâ€Consistent Stress Distribution Radialâ€Gradient Porous for Silicon Anode. Advanced Functional Materials, 2022, 32, .	7.8	34
71	Micro-nano structure Na2MnPO4F/C as cathode material with excellent sodium storage properties. Materials Letters, 2015, 145, 269-272.	1.3	33
72	Novel functional separator with self-assembled MnO2 layer via a simple and fast method in lithium-sulfur battery. Journal of Colloid and Interface Science, 2022, 606, 666-676.	5.0	33

#	Article	lF	CITATIONS
73	Large-Scale Synthesis of the Stable Co-Free Layered Oxide Cathode by the Synergetic Contribution of Multielement Chemical Substitution for Practical Sodium-Ion Battery. Research, 2020, 2020, 1469301.	2.8	33
74	Preparation of sodium trimetaphosphate and its application as an additive agent in a novel polyvinylidene fluoride based gel polymer electrolyte in lithium sulfur batteries. Polymer Chemistry, 2015, 6, 1619-1626.	1.9	32
75	Unexpected effects of zirconium-doping in the high performance sodium manganese-based layer-tunnel cathode. Journal of Materials Chemistry A, 2018, 6, 13934-13942.	5.2	32
76	Carbon dioxide solid-phase embedding reaction of silicon-carbon nanoporous composites for lithium-ion batteries. Chemical Engineering Journal, 2021, 423, 130127.	6.6	32
77	Dual-Modified Compact Layer and Superficial Ti Doping for Reinforced Structural Integrity and Thermal Stability of Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 54997-55006.	4.0	32
78	Interpreting Abnormal Charge–Discharge Plateau Migration in CuxS during Long-Term Cycling. ACS Applied Materials & Interfaces, 2019, 11, 3961-3970.	4.0	31
79	Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer–Tunnel Na _{0.6} MnO ₂ with Mg ²⁺ Doping at Na/Mn Site. ACS Applied Materials & Interfaces, 2019, 11, 26938-26945.	4.0	28
80	Enhanced constraint and catalysed conversion of lithium polysulfides <i>via</i> composite oxides from spent layered cathodes. Journal of Materials Chemistry A, 2019, 7, 17867-17875.	5.2	28
81	An Approach towards Synthesis of Nanoarchitectured LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathode Material for Lithium Ion Batteries. Chinese Journal of Chemistry, 2015, 33, 261-267.	2.6	27
82	Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries. Journal of Alloys and Compounds, 2019, 777, 434-442.	2.8	27
83	Structure and electrochemical performance modulation of a LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ cathode material by anion and cation co-doping for lithium ion batteries. RSC Advances, 2019, 9, 36849-36857.	1.7	26
84	Na ₂ S Treatment and Coherent Interface Modification of the Li-Rich Cathode to Address Capacity and Voltage Decay. ACS Applied Materials & Interfaces, 2020, 12, 42660-42668.	4.0	26
85	A fundamental understanding of the Fe/Ti doping induced structure formation process to realize controlled synthesis of layer-tunnel Na0.6MnO2 cathode. Nano Energy, 2020, 70, 104539.	8.2	26
86	A functional binder–sulfonated poly(ether ether ketone) for sulfur cathode of Li–S batteries. RSC Advances, 2016, 6, 77937-77943.	1.7	25
87	Employing MnO as multifunctional polysulfide reservoirs for enhanced-performance Li-S batteries. Journal of Alloys and Compounds, 2018, 748, 100-110.	2.8	25
88	A Li-substituted hydrostable layered oxide cathode material with oriented stacking nanoplate structure for high-performance sodium-ion battery. Chemical Engineering Journal, 2021, 412, 128719.	6.6	24
89	Tuning the component ratio and corresponding sodium storage properties of layer-tunnel hybrid Na0.6Mn1-Ni O2 cathode by a simple cationic Ni2+ doping strategy. Electrochimica Acta, 2018, 273, 63-70.	2.6	23
90	Novel Bifunctional Separator with a Self-Assembled FeOOH/Coated g-C ₃ N ₄ /KB Bilayer in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2020, 12, 57859-57869.	4.0	23

#	Article	IF	CITATIONS
91	The structural origin of enhanced stability of Na3.32Fe2.11Ca0.23(P2O7)2 cathode for Na-ion batteries. Nano Energy, 2021, 79, 105417.	8.2	23
92	Facile synthesis of Li3V2(Po4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. Journal of Solid State Electrochemistry, 2014, 18, 215-221.	1.2	22
93	Trapping polysulfides by chemical adsorption barrier of LixLayTiO3 for enhanced performance in lithium-sulfur batteries. Electrochimica Acta, 2018, 283, 894-903.	2.6	21
94	Synthesis of a novel tunnel Na _{0.5} K _{0.1} MnO ₂ composite as a cathode for sodium ion batteries. RSC Advances, 2016, 6, 54404-54409.	1.7	20
95	Simultaneous Component Ratio and Particle Size Optimization for Highâ€Performance and High Tap Density P2/P3 Composite Cathode of Sodiumâ€ion Batteries. ChemElectroChem, 2019, 6, 5155-5161.	1.7	20
96	Stabilizing the Structure of Nickelâ€Rich Lithiated Oxides via Cr Doping as Cathode with Boosted Highâ€Voltage/Temperature Cycling Performance for Liâ€Ion Battery. Energy Technology, 2020, 8, 1900498.	1.8	20
97	A novel Mn-based P2/tunnel/O3′ tri-phase composite cathode with enhanced sodium storage properties. Chemical Communications, 2020, 56, 2921-2924.	2.2	20
98	Microstructure-Controlled Li-Rich Mn-Based Cathodes by a Gas–Solid Interface Reaction for Tackling the Continuous Activation of Li ₂ MnO ₃ . ACS Applied Materials & Interfaces, 2021, 13, 40995-41003.	4.0	20
99	Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium–Sulfur Battery. ACS Applied Materials & Interfaces, 2021, 13, 44497-44508.	4.0	20
100	Investigating the influence of sodium sources towards improved Na3V2 (PO4)3 cathode of sodium-ion batteries. Journal of Alloys and Compounds, 2020, 815, 152430.	2.8	19
101	3D hierarchical rose-like Ni ₂ P@rGO assembled from interconnected nanoflakes as anode for lithium ion batteries. RSC Advances, 2020, 10, 3936-3945.	1.7	19
102	Synthesis of hierarchical Sn/SnO nanosheets assembled by carbon-coated hollow nanospheres as anode materials for lithium/sodium ion batteries. RSC Advances, 2020, 10, 6035-6042.	1.7	19
103	A novel binder-sulfonated polystyrene for the sulfur cathode of Li-S batteries. Ionics, 2017, 23, 2251-2258.	1.2	18
104	Deciphering an Abnormal Layeredâ€īunnel Heterostructure Induced by Chemical Substitution for the Sodium Oxide Cathode. Angewandte Chemie, 2020, 132, 1507-1511.	1.6	17
105	Synergistic Effect of Microstructure Engineering and Local Crystal Structure Tuning to Improve the Cycling Stability of Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 48720-48729.	4.0	17
106	Vacuum induced self-assembling nanoporous LiMn2O4 for lithium ion batteries with superior high rate capability. Electrochimica Acta, 2015, 186, 253-261.	2.6	16
107	Relieving capacity decay and voltage fading of Li1.2Ni0.13Co0.13Mn0.54O2 by Mg2+ and PO43- dual doping. Materials Research Bulletin, 2020, 130, 110923.	2.7	16
108	Novel Interlayer on the Separator with the Cr ₃ C ₂ Compound as a Robust Polysulfide Anchor for Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 7538-7545.	1.8	16

#	Article	IF	CITATIONS
109	Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method. Ionics, 2016, 22, 1361-1368.	1.2	15
110	Nanowire of WP as a Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2019, 25, 971-975.	1.7	15
111	Enabling Superior Electrochemical Performance of Lithium-Rich Li _{1.2} Ni _{0.2} Mn _{0.6} O ₂ Cathode Materials by Surface Integration. Industrial & Engineering Chemistry Research, 2020, 59, 19312-19321.	1.8	15
112	Rapid in-situ fabrication of Fe3O4/Fe7S8@C composite as anode materials for lithium-ion batteries. Materials Research Bulletin, 2021, 133, 111021.	2.7	15
113	Inhibition of the shuttle effect of lithium–sulfur batteries via a tannic acid-metal one-step in situ chemical film-forming modified separator. Nanoscale, 2021, 13, 5058-5068.	2.8	15
114	Preparation of carbon aerogel by ambient pressure drying and its application in lithium/sulfur battery. Journal of Applied Electrochemistry, 2013, 43, 65-72.	1.5	14
115	Influence of vanadium compound coating on lithium-rich layered oxide cathode for lithium-ion batteries. RSC Advances, 2014, 4, 56273-56278.	1.7	14
116	The influences of sodium sources on the structure evolution and electrochemical performances of layered-tunnel hybrid Na 0.6 MnO 2 cathode. Ceramics International, 2017, 43, 6303-6311.	2.3	14
117	Synthesis and electrochemical performance of micro-mesoporous carbon-sulfur composite cathode for Li–S batteries. Ionics, 2017, 23, 2951-2960.	1.2	14
118	Lithiumâ€lon Batteries: Suppressing Manganese Dissolution via Exposing Stable {111} Facets for Highâ€Performance Lithiumâ€lon Oxide Cathode (Adv. Sci. 13/2019). Advanced Science, 2019, 6, 1970076.	5.6	14
119	Synergistic effect of uniform lattice cation/anion doping to improve structural and electrochemical performance stability for Li-rich cathode materials. Nanotechnology, 2020, 31, 455704.	1.3	14
120	Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries. Journal of Materials Science, 2021, 56, 2347-2359.	1.7	14
121	Understanding of the Irreversible Phase Transition and Zr-Doped Modification Strategy for a Nickel-Rich Cathode under a High Voltage. ACS Sustainable Chemistry and Engineering, 2022, 10, 3651-3660.	3.2	14
122	LiNi0.5Mn1.5O4 hollow nano-micro hierarchical microspheres as advanced cathode for lithium ion batteries. Ionics, 2017, 23, 27-34.	1.2	13
123	Self-supported cobalt phosphate nanoarray with pseudocapacitive behavior: An efficient 3D anode material for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 848, 156285.	2.8	13
124	Exposing microstructure evolution of Ni-Rich Ni-Co-Al hydroxide precursor. Chemical Engineering Science, 2021, 233, 116337.	1.9	13
125	Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 20979-21000.	1.8	13
126	Revisit the Progress of Binders for a Silicon-Based Anode from the Perspective of Designed Binder Structure and Special Sized Silicon Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 6246-6268.	1.8	13

#	Article	IF	CITATIONS
127	A rational design of the coupling mechanism of physical adsorption and chemical charge effect for high-performance lithium–sulfur batteries. RSC Advances, 2019, 9, 12710-12717.	1.7	12
128	A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. Journal of Colloid and Interface Science, 2022, 620, 47-56.	5.0	12
129	Cobalt-doped lithium-rich cathode with superior electrochemical performance for lithium-ion batteries. RSC Advances, 2015, 5, 2947-2951.	1.7	11
130	Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni–Co–Al Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 22549-22558.	1.8	11
131	General Synthesis of M _{<i>x</i>} S (M = Co, Cu) Hollow Spheres with Enhanced Sodium-Ion Storage Property in Ether-Based Electrolyte. Industrial & Engineering Chemistry Research, 2020, 59, 1568-1577.	1.8	11
132	ls it universal that the layered-spinel structure can improve electrochemical performance?. Journal of Energy Chemistry, 2022, 64, 344-353.	7.1	11
133	Unveiling the abnormal capacity rising mechanism of MoS ₂ anode during long-term cycling for sodium-ion batteries. RSC Advances, 2021, 11, 28488-28495.	1.7	11
134	Highly Oriented {010} Crystal Plane Induced by Boron in Cobalt-Free Li- and Mn-Rich Layered Oxide. ACS Applied Materials & Interfaces, 2022, 14, 2711-2719.	4.0	11
135	TiO ₂ @Chlorella-Based Biomass Carbon Modified Separator for High-Rate Lithium–Sulfur Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 1761-1772.	1.8	11
136	Promoting electrochemical kinetics of Li-S batteries with C@SnS2 modified separator via synergic effect between porous carbon matrix and polar SnS2. Electrochimica Acta, 2021, 390, 138829.	2.6	10
137	Three-Dimensional Chestnut-Like Architecture Assembled from NaTi ₃ O ₆ (OH)·2H ₂ O@N-Doped Carbon Nanosheets with Enhanced Sodium Storage Properties. ACS Applied Materials & Interfaces, 2018, 10, 43740-43748.	4.0	9
138	Surface modification of layer-tunnel hybrid Na0.6MnO2 cathode with open tunnel structure Na2Ti6O13. Journal of Alloys and Compounds, 2020, 849, 156441.	2.8	9
139	MoO ₂ @C modified separator as an interlayer for high performance lithium–sulfur batteries. Nanotechnology, 2021, 32, 105206.	1.3	9
140	The structure-activity relationship between precursor fine structure and cathode performance in ultra-high Ni layered oxide. Chemical Engineering Science, 2022, 260, 117865.	1.9	9
141	Suppressing the Shuttling of Polysulfide by a Self-Assembled FeOOH Separator in Li–S Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 21066-21076.	1.8	8
142	Threeâ€Dimensional SnS ₂ Nanoarrays with Enhanced Lithiumâ€lon Storage Properties. ChemElectroChem, 2020, 7, 4484-4491.	1.7	8
143	A compared investigation of different biogum polymer binders for silicon anode of lithium-ion batteries. Ionics, 2021, 27, 1829-1836.	1.2	8
144	A Simple Gas–Solid Treatment for Surface Modification of Liâ€Rich Oxides Cathodes. Angewandte Chemie, 2021, 133, 23436-23443.	1.6	8

#	Article	IF	CITATIONS
145	Facile Combustion Synthesis and Electrochemical Performance of the Cathode Material Li _{1.231} Mn _{0.615} Ni _{0.154} O ₂ . European Journal of Inorganic Chemistry, 2013, 2013, 5436-5442.	1.0	7
146	Solid Electrolyte Interphase Composition Regulation via Coating AlF ₃ for a High-Performance Hard Carbon Anode in Sodium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 8242-8251.	2.5	6
147	Effective enhancement of electrochemical performance for low-cost cathode material Li1.231Mn0.615Ni0.154O2 via a novel facile hydrothermal modification. Journal of Power Sources, 2014, 246, 569-573.	4.0	5
148	In Operando Investigation of the Structural Evolution during Calcination and Corresponding Enhanced Performance of Three-Dimensional Na ₂ Ti ₆ O ₁₃ @C–N Hierarchical Microflowers. Industrial & Engineering Chemistry Research, 2018, 57, 17430-17436.	1.8	5
149	New Insights into the Mechanism of Enhanced Performance of Li[Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ with a Polyacrylic Acid-Modified Binder. ACS Applied Materials & Interfaces, 2021, 13, 10064-10070.	4.0	5
150	Facile Utilization of Spent LiCoO ₂ in Separator Decoration of Lithium-Sulfur Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 17911-17917.	1.8	4
151	A Ge/Carbon Atomicâ€Scale Hybrid Anode Material: A Micro–Nano Gradient Porous Structure with High Cycling Stability. Angewandte Chemie, 2021, 133, 12647-12654.	1.6	4
152	New Insight into High-Rate Performance Lithium-Rich Cathode Synthesis through Controlling the Reaction Pathways by Low-Temperature Intermediates. Industrial & Engineering Chemistry Research, 2022, 61, 453-463.	1.8	4
153	N-Doped C/ZnO-Modified Cu Foil Current Collector for a Stable Anode of Lithium-Metal Batteries. Industrial & Engineering Chemistry Research, 2022, 61, 7303-7311.	1.8	4
154	Synthesis and lithium-ion storage performances of LiFe0.5Co0.5PO4/C nanoplatelets and nanorods. Ionics, 2018, 24, 2275-2285.	1.2	3