
Akira Yoshimi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224843/publications.pdf Version: 2024-02-01

AKIDA YOSHIMI

#	Article	IF	CITATIONS
1	Fungicide activity through activation of a fungal signalling pathway. Molecular Microbiology, 2004, 53, 1785-1796.	2.5	215
2	MpkA-Dependent and -Independent Cell Wall Integrity Signaling in Aspergillus nidulans. Eukaryotic Cell, 2007, 6, 1497-1510.	3.4	157
3	Dynamics of cell wall components of <i>Magnaporthe grisea</i> during infectious structure development. Molecular Microbiology, 2009, 73, 553-570.	2.5	135
4	Group III Histidine Kinase Is a Positive Regulator of Hog1-Type Mitogen-Activated Protein Kinase in Filamentous Fungi. Eukaryotic Cell, 2005, 4, 1820-1828.	3.4	118
5	Functional Analysis of the α-1,3-Glucan Synthase Genes agsA and agsB in Aspergillus nidulans: AgsB Is the Major α-1,3-Glucan Synthase in This Fungus. PLoS ONE, 2013, 8, e54893.	2.5	95
6	Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi. Journal of Fungi (Basel, Switzerland), 2017, 3, 63.	3.5	90
7	Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Fungal Genetics and Biology, 2009, 46, 868-878.	2.1	87
8	Cell wall structure and biogenesis in <i>Aspergillus</i> species. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1700-1711.	1.3	84
9	Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genetics and Biology, 2016, 86, 58-70.	2.1	84
10	Two-Component Response Regulators Ssk1p and Skn7p Additively Regulate High-Osmolarity Adaptation and Fungicide Sensitivity in Cochliobolus heterostrophus. Eukaryotic Cell, 2007, 6, 171-181.	3.4	69
11	NikA/TcsC Histidine Kinase Is Involved in Conidiation, Hyphal Morphology, and Responses to Osmotic Stress and Antifungal Chemicals in Aspergillus fumigatus. PLoS ONE, 2013, 8, e80881.	2.5	67
12	The MAPKK kinase ChSte11 regulates sexual/asexual development, melanization, pathogenicity, and adaptation to oxidative stress in Cochliobolus heterostrophus. Current Genetics, 2009, 55, 439-448.	1.7	56
13	Increased enzyme production under liquid culture conditions in the industrial fungus <i>Aspergillus oryzae</i> by disruption of the genes encoding cell wall α-1,3-glucan synthase. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1853-1863.	1.3	42
14	Cell wall α-1,3-glucan prevents α-amylase adsorption onto fungal cell in submerged culture of Aspergillus oryzae. Journal of Bioscience and Bioengineering, 2017, 124, 47-53.	2.2	30
15	Aspergillus flavus GPI-anchored protein-encoding ecm33 has a role in growth, development, aflatoxin biosynthesis, and maize infection. Applied Microbiology and Biotechnology, 2018, 102, 5209-5220.	3.6	27
16	Both Galactosaminogalactan and α-1,3-Glucan Contribute to Aggregation of Aspergillus oryzae Hyphae in Liquid Culture. Frontiers in Microbiology, 2019, 10, 2090.	3.5	27
17	The mechanisms of hyphal pellet formation mediated by polysaccharides, α-1,3-glucan and galactosaminogalactan, in Aspergillus species. Fungal Biology and Biotechnology, 2020, 7, 10.	5.1	26
18	Molecular Mass and Localization of α-1,3-Glucan in Cell Wall Control the Degree of Hyphal Aggregation in Liquid Culture of Aspergillus nidulans. Frontiers in Microbiology, 2018, 9, 2623.	3.5	24

Akira Yoshimi

#	Article	IF	CITATIONS
19	Characterization and genetic analysis of laboratory mutants of Cochliobolus heterostrophus resistant to dicarboximide and phenylpyrrole fungicides. Journal of General Plant Pathology, 2003, 69, 101-108.	1.0	23
20	Novel Reporter Gene Expression Systems for Monitoring Activation of theAspergillus nidulansHOG Pathway. Bioscience, Biotechnology and Biochemistry, 2007, 71, 1724-1730.	1.3	23
21	Expression of ustR and the Golgi protease KexB are required for ustiloxin B biosynthesis in Aspergillus oryzae. AMB Express, 2016, 6, 9.	3.0	22
22	Cell wall structure of secreted laccase-silenced strain in Lentinula edodes. Fungal Biology, 2018, 122, 1192-1200.	2.5	22
23	Mitogen-activated protein kinases MpkA and MpkB independently affect micafungin sensitivity in <i>Aspergillus nidulans</i> . Bioscience, Biotechnology and Biochemistry, 2015, 79, 836-844.	1.3	20
24	lonic interaction of positive amino acid residues of fungal hydrophobin <scp>RolA</scp> with acidic amino acid residues of cutinase <scp>CutL1</scp> . Molecular Microbiology, 2015, 96, 14-27.	2.5	16
25	Heterologous Production of a Novel Cyclic Peptide Compound, KK-1, in Aspergillus oryzae. Frontiers in Microbiology, 2018, 9, 690.	3.5	16
26	Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus. Mycological Research, 2009, 113, 1208-1215.	2.5	14
27	Novel Antifungal Compound Z-705 Specifically Inhibits Protein Kinase C of Filamentous Fungi. Applied and Environmental Microbiology, 2019, 85, .	3.1	11
28	Use of the Aspergillus oryzae actin gene promoter in a novel reporter system for exploring antifungal compounds and their target genes. Applied Microbiology and Biotechnology, 2010, 87, 1829-1840.	3.6	10
29	Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1781-1791.	1.3	10
30	Improved recombinant protein production in Aspergillus oryzae lacking both α-1,3-glucan and galactosaminogalactan in batch culture with a lab-scale bioreactor. Journal of Bioscience and Bioengineering, 2021, , .	2.2	8
31	Cell Wall Integrity and Its Industrial Applications in Filamentous Fungi. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	1314 rgBT 3.5	/Oyerlock 10
32	Characterization of Cell Wall α-1,3-Glucan–Deficient Mutants in <i>Aspergillus oryzae</i> Isolated by a Screening Method Based on Their Sensitivities to Congo Red or Lysing Enzymes. Journal of Applied Glycoscience (1999), 2017, 64, 65-73.	0.7	3
33	Analysis of the self-assembly process of <i>Aspergillus oryzae</i> hydrophobin RolA by Langmuir–Blodgett method. Bioscience, Biotechnology and Biochemistry, 2020, 84, 678-685.	1.3	3
34	Metabolic Engineering Techniques to Increase the Productivity of Primary and Secondary Metabolites Within Filamentous Fungi. Frontiers in Fungal Biology, 2021, 2, .	2.0	3
35	A Glycosylphosphatidylinositol-Anchored α-Amylase Encoded by amyD Contributes to a Decrease in the Molecular Mass of Cell Wall α-1,3-Glucan in Aspergillus nidulans. Frontiers in Fungal Biology, 2022, 2, .	2.0	3
36	Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces. Applied and Environmental Microbiology, 2022, 88, AEM0208721.	3.1	3

#	Article	IF	CITATIONS
37	Downregulation of the ypdA Gene Encoding an Intermediate of His-Asp Phosphorelay Signaling in Aspergillus nidulans Induces the Same Cellular Effects as the Phenylpyrrole Fungicide Fludioxonil. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
38	Response and Adaptation to Cell Wall Stress and Osmotic Stress in Aspergillus Species. , 2015, , 199-218.		2
39	Meiotic Silencing in Dothideomycetous Bipolaris maydis. Frontiers in Fungal Biology, 0, 3, .	2.0	2
40	ç³,状èŒã«ãŠãʿã,‹ç°èfžå£æ§‹ç⁻‰ã,·ã,°ãƒŠãƒ«. Kagaku To Seibutsu, 2009, 47, 861-867.	0.0	0
41	ãfē,¹ãf‰ã,¯ãƒ»å¦ç"Ÿã₽実é"å®₿§ã₽震ç½å⁻¾å¿œãï経éŽ. Kagaku To Seibutsu, 2012, 50, 224-227.	0.0	0
42	Hyperosmotic medium partially restores the growth defect and the impaired production of sterigmatocystein of an Aspergillus nidulans l"pmtC mutant in a HogA-independent manner. FEMS Microbiology Letters, 2021, 368, .	1.8	0
43	病原ç³,状èŒã®æµ,é€åœ§å¿œç"ã,∙ã,°ãƒŠãƒ«ä¼é²çµŒè∙҇. Kagaku To Seibutsu, 2009, 47, 644-650.	0.0	0
44	[Mini Review] Understanding Hyphal Adhesion via the Analysis of the Cell Surface Polysaccharides in Filamentous Fungi and Its Application to High Density Culture. Bulletin of Applied Glycoscience, 2019,	0.0	0

9, 177-183.