Imre Tóth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/822437/publications.pdf

Version: 2024-02-01

71 2,418 29 47
papers citations h-index g-index

72 72 72 1565
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules, 2022, 27, 371.	3.8	6
2	Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a Hypoxia-Sensitive PET Probe. Pharmaceuticals, 2022, 15, 666.	3.8	2
3	Towards ²¹³ Bi alpha-therapeutics and beyond: unravelling the foundations of efficient Bi ^{III} complexation by DOTP. Inorganic Chemistry Frontiers, 2021, 8, 3893-3904.	6.0	11
4	Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution Dynamic NMR Studies. Molecules, 2021, 26, 4956.	3.8	2
5	Exploring Cyclic Aminopolycarboxylate Ligands for Sb(III) Complexation: PCTA and Its Derivatives as a Promising Solution. Inorganic Chemistry, 2021, 60, 14253-14262.	4.0	1
6	Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in \hat{I}^3 -valerolactone as bio-based solvent. Journal of Organometallic Chemistry, 2020, 923, 121407.	1.8	18
7	Shape and Size Tuning of Bi ^{III} -Centered Polyoxopalladates: High Resolution ²⁰⁹ Bi NMR and ^{205/206} Bi Radiolabeling for Potential Pharmaceutical Applications. Inorganic Chemistry, 2020, 59, 16769-16782.	4.0	10
8	Towards Sustainable Catalysis – Highly Efficient Olefin Metathesis in Protic Media Using Phase Labelled Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Catalysts. ChemCatChem, 2020, 12, 1953-1957.	3.7	30
9	Indium in Polyoxopalladate(II) Chemistry: Synthesis of All-Acetate-Capped [InPd ₁₂ O ₈ (OAc) ₁₆] ^{5â€"} and Controlled Transformation to Phosphate-Capped Double-Cube and Monocube. Inorganic Chemistry, 2019, 58, 15864-15871.	4.0	7
10	PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Galliumâ€68 Complexes at Physiological pH. Chemistry - A European Journal, 2019, 25, 10698-10709.	3.3	11
11	Taking the next step toward inert Mn ²⁺ complexes of open-chain ligands: the case of the rigid PhDTA ligand. New Journal of Chemistry, 2018, 42, 8001-8011.	2.8	34
12	Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents. Inorganic Chemistry, 2018, 57, 5973-5986.	4.0	18
13	Effect of the Nature of Donor Atoms on the Thermodynamic, Kinetic and Relaxation Properties of Mn(II) Complexes Formed With Some Trisubstituted 12-Membered Macrocyclic Ligands. Frontiers in Chemistry, 2018, 6, 232.	3.6	39
14	Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of Highly Selective Ga-68 Labeling. Frontiers in Chemistry, 2018, 6, 170.	3.6	9
15	Improved Efficacy of Synthesizing *M ^{III} -Labeled DOTA Complexes in Binary Mixtures of Water and Organic Solvents. A Combined Radio- and Physicochemical Study. Inorganic Chemistry, 2018, 57, 6107-6117.	4.0	21
16	Oneâ€pot Synthesis of 1,3â€Butadiene and 1,6â€Hexanediol Derivatives from Cyclopentadiene (CPD) via Tandem Olefin Metathesis Reactions. ChemCatChem, 2018, 10, 4870-4877.	3.7	1
17	AAZTA: An Ideal Chelating Agent for the Development of ⁴⁴ Sc PET Imaging Agents. Angewandte Chemie - International Edition, 2017, 56, 2118-2122.	13.8	53
18	AAZTA: An Ideal Chelating Agent for the Development of ⁴⁴ Sc PET Imaging Agents. Angewandte Chemie, 2017, 129, 2150-2154.	2.0	11

#	Article	IF	CITATIONS
19	Metathesis of renewable polyene feedstocks – Indirect evidences of the formation of catalytically active ruthenium allylidene species. Journal of Organometallic Chemistry, 2017, 847, 213-217.	1.8	6
20	Equilibrium, Kinetic and Structural Properties of Gallium(III) and Some Divalent Metal Complexes Formed with the New DATA ^m and DATA ^{5m} Ligands. Chemistry - A European Journal, 2017, 23, 10358-10371.	3.3	25
21	Efficient stereochemical communication in phosphine-amine palladium-complexes: Exploration of N-substituent effects in coordination chemistry and catalysis. Journal of Organometallic Chemistry, 2017, 846, 129-140.	1.8	12
22	Synthesis of 1,6-Hexandiol, Polyurethane Monomer Derivatives via Isomerization Metathesis of Methyl Linolenate. ACS Sustainable Chemistry and Engineering, 2017, 5, 11215-11220.	6.7	15
23	Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. Journal of Inorganic Biochemistry, 2017, 177, 8-16.	3.5	14
24	Simple ¹⁷ O NMR method for studying electron selfâ€exchange reaction between UO ₂ ²⁺ and U ⁴⁺ aqua ions in acidic solution. Magnetic Resonance in Chemistry, 2016, 54, 444-450.	1.9	1
25	A Bisamide Derivative of [Mn(1,4-DO2A)] - Solution Thermodynamic, Kinetic, and NMR Relaxometric Studies. European Journal of Inorganic Chemistry, 2016, 2016, 1165-1174.	2.0	29
26	Synthesis, Structure, and Antibacterial Activity of a Thallium(III)-Containing Polyoxometalate, [Tl ₂ { <i>>B</i> -β-SiW ₈ O ₃₀ (OH)} ₂] ^{12–} . Inorganic Chemistry, 2016, 55, 10118-10121.	4.0	9
27	Physico-chemical properties of MnII complexes formed with cis- and trans-DO2A: thermodynamic, electrochemical and kinetic studies. Journal of Inorganic Biochemistry, 2016, 163, 206-213.	3.5	36
28	A rigidified AAZTA-like ligand as efficient chelator for 68 Ga radiopharmaceuticals. Chemistry Select, $2016, 1, 163-171$.	1.5	14
29	Synthesis of new N-substituted chiral phosphine–phosphoramidite ligands and their application in asymmetric hydrogenations and allylic alkylations. Tetrahedron: Asymmetry, 2015, 26, 666-673.	1.8	11
30	Equilibrium and dissociation kinetics of the [Al(NOTA)] complex (NOTAÂ=Â1,4,7-triazacyclononane-1,4,7-triacetate). Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 19-33.	1.7	13
31	Synthesis of hemilabile P,N-ligands with a pentane-2,4-diyl backbone. Tetrahedron Letters, 2014, 55, 4120-4122.	1.4	12
32	Highly Stable Complexes of Divalent Metal Ions (Mg ²⁺ , Ca ²⁺ ,) Tj ETQq0 0 0 rgBT /Ove Containing a Picolinate Pendant. European Journal of Inorganic Chemistry, 2014, 2014, 6165-6173.	rlock 10 T	f 50 227 Td (14
33	Equilibrium, Kinetic and Structural Studies of AAZTA Complexes with Ga ³⁺ , In ³⁺ and Cu ²⁺ . European Journal of Inorganic Chemistry, 2013, 2013, 147-162.	2.0	49
34	Influence of gem-Dimethyl Substitution on the Stability, Kinetics and Relaxometric Properties of PDTA Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2074-2086.	2.0	10
35	Complexation of Molybdenum(VI) with Bis(3-hydroxy-4-pyridinone)amino Acid Derivatives. European Journal of Inorganic Chemistry, 2007, 2007, 1728-1737.	2.0	19
36	Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene. Organometallics, 2003, 22, 1582-1584.	2.3	30

#	Article	IF	CITATIONS
37	Equilibria and dynamics of some aqueous peroxomolybdophosphate catalysts: a potentiometric and 31P NMR spectroscopic study. Dalton Transactions, 2003, , 2512-2518.	3.3	6
38	New insights into the solution equilibrium of molybdenum(vi)–hydroxamate systems: 1H and 17O NMR spectroscopic study of Mo(vi)–desferrioxamine B and Mo(vi)–monohydroxamic acid systems. Dalton Transactions, 2003, , 1645-1652.	3.3	20
39	Highly Selective Hydroformylation of the Cinchona Alkaloids. Journal of Organic Chemistry, 2002, 67, 5022-5024.	3.2	17
40	Equilibria and dynamics of some aqueous peroxomolybdate catalysts: a 170 NMR spectroscopic study. Dalton Transactions RSC, 2002, , 4451-4456.	2.3	14
41	Cyanide Exchange on Tl(CN)4â° in Aqueous Solution Studied by205Tl and13C NMR Spectroscopy. European Journal of Inorganic Chemistry, 2001, 2001, 1709-1717.	2.0	11
42	Asymmetric hydroformylation of styrene using rhodium and platinum complexes of diphosphites containing chiral chelate backbones and chiral 1,3,2-dioxaphosphorinane moieties. Tetrahedron: Asymmetry, 1998, 9, 3135-3142.	1.8	34
43	Alternative supported aqueous-phase catalyst systems. Journal of Molecular Catalysis A, 1997, 116, 217-229.	4.8	48
44	Chiral sulfonated phosphines. Rhodium(I)-catalyzed asymmetric hydrogenolysis of epoxides. Journal of Molecular Catalysis A, 1997, 116, 85-97.	4.8	28
45	Synthesis of Pt compounds containing chiral (2S,4S) -pentane-2,4-diyl-bis(5H-dibenzo[b]phosphindole) as ligand and their use in asymmetric hydroformylation of styrene derivatives. Journal of Organometallic Chemistry, 1997, 540, 15-25.	1.8	41
46	Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes. Inorganic Chemistry, 1994, 33, 4070-4076.	4.0	199
47	Additions and Corrections - Influence of the Reaction Temperature on the Enantioselection of Styrene Hydroformylation Catalyzed by PtCl(SnCl3) Complexes of p-Aryl-Substituted Chiral Ligands. Organometallics, 1994, 13, 1537-1537.	2.3	2
48	CO Insertion in Four-Coordinate cis-Methyl(carbonyl)platinum-Diphosphine Compounds. An Ionic Mechanism for Platinum-Diphosphine-Catalyzed Hydroformylation. Inorganic Chemistry, 1994, 33, 5708-5712.	4.0	64
49	Formation of Dinuclear Palladium(I) Hydride [Pd2(.muH)(.muCO) $\{(S,S)-BDPP\}2$]Cl by Methanolysis or Hydrolysis of Pd(COMe)(Cl) $\{(S,S)-BDPP\}$ $\{(S,S)-BDPP = (2S,4S)-2,4-Bis(diphenylphosphino)pentane\}$. Organometallics, 1994, 13, 2118-2122.	2.3	44
50	Synthesis and carbonylation of $[Pd(Me)(OMe)\{(S,S)-bdpp\}][(S,S)-bdpp = (2S,4S)-2,4-bis(diphenylphosphino)pentane]$. Journal of the Chemical Society Chemical Communications, 1993, , 529-531.	2.0	28
51	Water-soluble electron-donating phosphines: sulfonation of tris(.omegaphenylalkyl)phosphines. Organometallics, 1993, 12, 164-170.	2.3	59
52	NMR studies of the structures of p-aryl-substituted chiral ligands in rhodium(I) and platinum(II) complexes. Organometallics, 1993, 12, 1506-1513.	2.3	22
53	Influence of the reaction temperature on the enantioselection of styrene hydroformylation catalyzed by PtCl(SnCl3) complexes of p-aryl-substituted chiral ligands. Organometallics, 1993, 12, 848-852.	2.3	73
54	Synthesis and identification by high-pressure NMR spectroscopy of the cationic square-planar cis-methyl(carbonyl)palladium diphosphine compound [Pd(CH3)(CO)[(S,S)-BDPP]]BF4, an intermediate in CO insertion into the Pd-Me bond. Journal of the American Chemical Society, 1993, 115, 10388-10389.	13.7	95

#	Article	IF	CITATIONS
55	Immobilization of rhodium complexes of amine-functionalized BDPP and chiraphos on a soluble form of the strongly acidic Nafion-H cation exchange resin. Journal of Molecular Catalysis, 1992, 71, 365-371.	1.2	30
56	Hydroformylation of 1-hexene with Pt(P(m-C6H4SO3Na)3)2Cl2 and its tin chloride analogue on a controlled-pore glass. Journal of Molecular Catalysis, 1991, 70, 363-368.	1.2	35
57	Bis[tris(m(sodium sulfonato)phenyl)phosphine] hexacarbonyl dicobalt, Co2(CO)6 (P(m-C6H4SO3Na)3)2, in a supported aqueous phase for the hydroformylation of 1-hexene. Journal of Organometallic Chemistry, 1991, 403, 221-227.	1.8	54
58	Immobilization of HRh(CO)(P(m-C6H4SO3Na)3)3 on an anion exchange resin for the hydroformylation of higher olefins. Catalysis Letters, 1991, 8, 209-214.	2.6	23
59	Enantioselective two-phase hydrogenation of ?-amino acid precursors with water soluble rhodium complexes of the cationic ligand (S,S)-2,4-bis[bis-(p-N,N,N-trimethylammoniumphenyl)phosphino]pentane,		