## Imre TÃ<sup>3</sup>th

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/822437/publications.pdf Version: 2024-02-01



Ιμος ΤΔ3τμ

| #  | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Kinetics of Formation and Dissociation of Lanthanide(III)-DOTA Complexes. Inorganic Chemistry, 1994, 33, 4070-4076.                                                                                                                                                                                        | 4.0  | 199       |
| 2  | Chiral Sulfonated Phosphines. Syntheses and Use as Ligands in Asymmetric Hydrogenation Using an<br>Aqueous-Organic Two-Phse Solvent System. Organometallics, 1989, 8, 542-547.                                                                                                                             | 2.3  | 164       |
| 3  | A facile method for the preparation of 2,4-bis(diphenylphosphino)pentane (BDPP) enantiomers and their application in asymmetric hydrogenation. Journal of Organometallic Chemistry, 1985, 279, 23-29.                                                                                                      | 1.8  | 146       |
| 4  | Temperature dependence of the asymmetric induction in the<br>PtCl(SnCl3)[(â~)-(2S,4S)-2,4-bis(diphenylphosphino)pentane]-catalyzed enantioselective<br>hydroformylation reaction. Journal of Organometallic Chemistry, 1988, 350, 277-284.                                                                 | 1.8  | 95        |
| 5  | Synthesis and identification by high-pressure NMR spectroscopy of the cationic square-planar<br>cis-methyl(carbonyl)palladium diphosphine compound [Pd(CH3)(CO)[(S,S)-BDPP]]BF4, an intermediate in<br>CO insertion into the Pd-Me bond. Journal of the American Chemical Society, 1993, 115, 10388-10389. | 13.7 | 95        |
| 6  | Novel chiral water soluble phosphines II. Applications in catalytic asymmetric hydrogenation.<br>Tetrahedron: Asymmetry, 1990, 1, 913-930.                                                                                                                                                                 | 1.8  | 74        |
| 7  | Influence of the reaction temperature on the enantioselection of styrene hydroformylation catalyzed by PtCl(SnCl3) complexes of p-aryl-substituted chiral ligands. Organometallics, 1993, 12, 848-852.                                                                                                     | 2.3  | 73        |
| 8  | Asymmetric hydroformylation with Pt-phosphine-SnCl2 and Pt-bisphosphine-CuCl2 (or CuCl) catalytic systems. Journal of Organometallic Chemistry, 1989, 370, 257-261.                                                                                                                                        | 1.8  | 64        |
| 9  | CO Insertion in Four-Coordinate cis-Methyl(carbonyl)platinum-Diphosphine Compounds. An Ionic<br>Mechanism for Platinum-Diphosphine-Catalyzed Hydroformylation. Inorganic Chemistry, 1994, 33,<br>5708-5712.                                                                                                | 4.0  | 64        |
| 10 | Water-soluble electron-donating phosphines: sulfonation of tris(.omegaphenylalkyl)phosphines.<br>Organometallics, 1993, 12, 164-170.                                                                                                                                                                       | 2.3  | 59        |
| 11 | Chiral sulphonated phosphines. Journal of Organometallic Chemistry, 1989, 370, 277-284.                                                                                                                                                                                                                    | 1.8  | 58        |
| 12 | Novel chiral water soluble phosphines I. Preparation and characterization of amine functionalized<br>DIOP, Chiraphos, and BDPP derivatives and quaternization of their rhodium complexes. Tetrahedron:<br>Asymmetry, 1990, 1, 895-912.                                                                     | 1.8  | 55        |
| 13 | Bis[tris(m(sodium sulfonato)phenyl)phosphine] hexacarbonyl dicobalt, Co2(CO)6 (P(m-C6H4SO3Na)3)2,<br>in a supported aqueous phase for the hydroformylation of 1-hexene. Journal of Organometallic<br>Chemistry, 1991, 403, 221-227.                                                                        | 1.8  | 54        |
| 14 | AAZTA: An Ideal Chelating Agent for the Development of <sup>44</sup> Sc PET Imaging Agents.<br>Angewandte Chemie - International Edition, 2017, 56, 2118-2122.                                                                                                                                             | 13.8 | 53        |
| 15 | Equilibrium, Kinetic and Structural Studies of AAZTA Complexes with Ga <sup>3+</sup> ,<br>In <sup>3+</sup> and Cu <sup>2+</sup> . European Journal of Inorganic Chemistry, 2013, 2013, 147-162.                                                                                                            | 2.0  | 49        |
| 16 | Alternative supported aqueous-phase catalyst systems. Journal of Molecular Catalysis A, 1997, 116,<br>217-229.                                                                                                                                                                                             | 4.8  | 48        |
| 17 | Use of heterogeneous asymmetric hydrogenation for the preparation of a chiral phosphinite and its<br>application as a ligand in homogeneous asymmetric hydrogenation. Journal of Organic Chemistry, 1981,<br>46, 5427-5428.                                                                                | 3.2  | 47        |
| 18 | Formation of Dinuclear Palladium(I) Hydride [Pd2(.muH)(.muCO){(S,S)-BDPP}2]Cl by Methanolysis or<br>Hydrolysis of Pd(COMe)(Cl){(S,S)-BDPP} {(S,S)-BDPP = (2S,4S)-2,4-Bis(diphenylphosphino)pentane}.<br>Organometallics, 1994, 13, 2118-2122.                                                              | 2.3  | 44        |

Imre Tóth

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Synthesis of Pt compounds containing chiral (2S,4S) -pentane-2,4-diyl-bis(5H-dibenzo[b]phosphindole)<br>as ligand and their use in asymmetric hydroformylation of styrene derivatives. Journal of<br>Organometallic Chemistry, 1997, 540, 15-25. | 1.8 | 41        |
| 20 | Effect of the Nature of Donor Atoms on the Thermodynamic, Kinetic and Relaxation Properties of<br>Mn(II) Complexes Formed With Some Trisubstituted 12-Membered Macrocyclic Ligands. Frontiers in<br>Chemistry, 2018, 6, 232.                     | 3.6 | 39        |
| 21 | Enantioselective two-phase hydrogenation of ?-amino acid precursors with water soluble rhodium complexes of the cationic ligand (S,S)-2,4-bis[bis-(p-N,N,N-trimethylammoniumphenyl)phosphino]pentane,                                            |     |           |

Imre TÃ<sup>3</sup>th

| #  | Article                                                                                                                                                                                                                                | IF               | CITATIONS           |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 37 | Asymmetric hydrogenation using chiral phosphinite rhodium complexes. Tetrahedron Letters, 1984, 25, 4965-4966.                                                                                                                         | 1.4              | 22                  |
| 38 | NMR studies of the structures of p-aryl-substituted chiral ligands in rhodium(I) and platinum(II) complexes. Organometallics, 1993, 12, 1506-1513.                                                                                     | 2.3              | 22                  |
| 39 | Improved Efficacy of Synthesizing *M <sup>III</sup> -Labeled DOTA Complexes in Binary Mixtures of<br>Water and Organic Solvents. A Combined Radio- and Physicochemical Study. Inorganic Chemistry, 2018,<br>57, 6107-6117.             | 4.0              | 21                  |
| 40 | New insights into the solution equilibrium of molybdenum(vi)–hydroxamate systems: 1H and 17O NMR<br>spectroscopic study of Mo(vi)–desferrioxamine B and Mo(vi)–monohydroxamic acid systems. Dalton<br>Transactions, 2003, , 1645-1652. | 3.3              | 20                  |
| 41 | Complexation of Molybdenum(VI) with Bis(3-hydroxy-4-pyridinone)amino Acid Derivatives. European<br>Journal of Inorganic Chemistry, 2007, 2007, 1728-1737.                                                                              | 2.0              | 19                  |
| 42 | Coordination Properties of GdDO3A-Based Model Compounds of Bioresponsive MRI Contrast Agents.<br>Inorganic Chemistry, 2018, 57, 5973-5986.                                                                                             | 4.0              | 18                  |
| 43 | Palladium-catalyzed aryloxy- and alkoxycarbonylation of aromatic iodides in Î <sup>3</sup> -valerolactone as bio-based solvent. Journal of Organometallic Chemistry, 2020, 923, 121407.                                                | 1.8              | 18                  |
| 44 | Highly Selective Hydroformylation of the Cinchona Alkaloids. Journal of Organic Chemistry, 2002, 67, 5022-5024.                                                                                                                        | 3.2              | 17                  |
| 45 | Synthesis of 1,6-Hexandiol, Polyurethane Monomer Derivatives via Isomerization Metathesis of Methyl<br>Linolenate. ACS Sustainable Chemistry and Engineering, 2017, 5, 11215-11220.                                                    | 6.7              | 15                  |
| 46 | Equilibria and dynamics of some aqueous peroxomolybdate catalysts: a 170 NMR spectroscopic study.<br>Dalton Transactions RSC, 2002, , 4451-4456.                                                                                       | 2.3              | 14                  |
| 47 | Highly Stable Complexes of Divalent Metal Ions (Mg <sup>2+</sup> , Ca <sup>2+</sup> ,) Tj ETQq1 1 0.784314 r<br>Containing a Picolinate Pendant. European Journal of Inorganic Chemistry, 2014, 2014, 6165-6173.                       | gBT /Over<br>2.0 | lock 10 Tf 50<br>14 |
| 48 | A rigidified AAZTA-like ligand as efficient chelator for68Ga radiopharmaceuticals. ChemistrySelect, 2016, 1, 163-171.                                                                                                                  | 1.5              | 14                  |
| 49 | Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. Journal of Inorganic Biochemistry, 2017, 177, 8-16.                          | 3.5              | 14                  |
| 50 | Equilibrium and dissociation kinetics of the [Al(NOTA)] complex<br>(NOTAÂ=Â1,4,7-triazacyclononane-1,4,7-triacetate). Reaction Kinetics, Mechanisms and Catalysis, 2015, 116,<br>19-33.                                                | 1.7              | 13                  |
| 51 | Synthesis of hemilabile P,N-ligands with a pentane-2,4-diyl backbone. Tetrahedron Letters, 2014, 55,<br>4120-4122.                                                                                                                     | 1.4              | 12                  |
| 52 | Efficient stereochemical communication in phosphine-amine palladium-complexes: Exploration of<br>N-substituent effects in coordination chemistry and catalysis. Journal of Organometallic Chemistry,<br>2017, 846, 129-140.            | 1.8              | 12                  |
| 53 | Cyanide Exchange on Tl(CN)4â~' in Aqueous Solution Studied by205Tl and13C NMR Spectroscopy.<br>European Journal of Inorganic Chemistry, 2001, 2001, 1709-1717.                                                                         | 2.0              | 11                  |
| 54 | Synthesis of new N-substituted chiral phosphine–phosphoramidite ligands and their application in asymmetric hydrogenations and allylic alkylations. Tetrahedron: Asymmetry, 2015, 26, 666-673.                                         | 1.8              | 11                  |

Imre TÃ<sup>3</sup>th

| #  | Article                                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | AAZTA: An Ideal Chelating Agent for the Development of <sup>44</sup> Sc PET Imaging Agents.<br>Angewandte Chemie, 2017, 129, 2150-2154.                                                                                                                                           | 2.0 | 11        |
| 56 | PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Galliumâ€68<br>Complexes at Physiological pH. Chemistry - A European Journal, 2019, 25, 10698-10709.                                                                                            | 3.3 | 11        |
| 57 | Towards <sup>213</sup> Bi alpha-therapeutics and beyond: unravelling the foundations of efficient<br>Bi <sup>III</sup> complexation by DOTP. Inorganic Chemistry Frontiers, 2021, 8, 3893-3904.                                                                                   | 6.0 | 11        |
| 58 | Influence of gem-Dimethyl Substitution on the Stability, Kinetics and Relaxometric Properties of PDTA<br>Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 2074-2086.                                                                                               | 2.0 | 10        |
| 59 | Shape and Size Tuning of Bi <sup>III</sup> -Centered Polyoxopalladates: High Resolution<br><sup>209</sup> Bi NMR and <sup>205/206</sup> Bi Radiolabeling for Potential Pharmaceutical<br>Applications. Inorganic Chemistry, 2020, 59, 16769-16782.                                | 4.0 | 10        |
| 60 | Synthesis, Structure, and Antibacterial Activity of a Thallium(III)-Containing Polyoxometalate,<br>[Tl <sub>2</sub> { <i>B</i> -β-SiW <sub>8</sub> O <sub>30</sub> (OH)} <sub>2</sub> ] <sup>12–</sup> .<br>Inorganic Chemistry, 2016, 55, 10118-10121.                           | 4.0 | 9         |
| 61 | Equilibrium Thermodynamics, Formation, and Dissociation Kinetics of Trivalent Iron and Gallium<br>Complexes of Triazacyclononane-Triphosphinate (TRAP) Chelators: Unraveling the Foundations of<br>Highly Selective Ga-68 Labeling. Frontiers in Chemistry, 2018, 6, 170.         | 3.6 | 9         |
| 62 | Indium in Polyoxopalladate(II) Chemistry: Synthesis of All-Acetate-Capped<br>[InPd <sub>12</sub> O <sub>8</sub> (OAc) <sub>16</sub> ] <sup>5–</sup> and Controlled<br>Transformation to Phosphate-Capped Double-Cube and Monocube. Inorganic Chemistry, 2019, 58,<br>15864-15871. | 4.0 | 7         |
| 63 | Equilibria and dynamics of some aqueous peroxomolybdophosphate catalysts: a potentiometric and31P<br>NMR spectroscopic study. Dalton Transactions, 2003, , 2512-2518.                                                                                                             | 3.3 | 6         |
| 64 | Metathesis of renewable polyene feedstocks – Indirect evidences of the formation of catalytically active ruthenium allylidene species. Journal of Organometallic Chemistry, 2017, 847, 213-217.                                                                                   | 1.8 | 6         |
| 65 | A New Oxygen Containing Pyclen-Type Ligand as a Manganese(II) Binder for MRI and 52Mn PET<br>Applications: Equilibrium, Kinetic, Relaxometric, Structural and Radiochemical Studies. Molecules,<br>2022, 27, 371.                                                                 | 3.8 | 6         |
| 66 | Additions and Corrections - Influence of the Reaction Temperature on the Enantioselection of Styrene<br>Hydroformylation Catalyzed by PtCl(SnCl3) Complexes of p-Aryl-Substituted Chiral Ligands.<br>Organometallics, 1994, 13, 1537-1537.                                        | 2.3 | 2         |
| 67 | Complexes of Bifunctional DO3A-N-(α-amino)propinate Ligands with Mg(II), Ca(II), Cu(II), Zn(II), and<br>Lanthanide(III) Ions: Thermodynamic Stability, Formation and Dissociation Kinetics, and Solution<br>Dynamic NMR Studies. Molecules, 2021, 26, 4956.                       | 3.8 | 2         |
| 68 | Synthesis, Physicochemical, Labeling and In Vivo Characterization of 44Sc-Labeled DO3AM-NI as a<br>Hypoxia-Sensitive PET Probe. Pharmaceuticals, 2022, 15, 666.                                                                                                                   | 3.8 | 2         |
| 69 | Simple <sup>17</sup> 0 NMR method for studying electron selfâ€exchange reaction between<br>UO <sub>2</sub> <sup>2+</sup> and U <sup>4+</sup> aqua ions in acidic solution. Magnetic Resonance<br>in Chemistry, 2016, 54, 444-450.                                                 | 1.9 | 1         |
| 70 | Oneâ€pot Synthesis of 1,3â€Butadiene and 1,6â€Hexanediol Derivatives from Cyclopentadiene (CPD) via Tandem<br>Olefin Metathesis Reactions. ChemCatChem, 2018, 10, 4870-4877.                                                                                                      | 3.7 | 1         |
| 71 | Exploring Cyclic Aminopolycarboxylate Ligands for Sb(III) Complexation: PCTA and Its Derivatives as a Promising Solution. Inorganic Chemistry, 2021, 60, 14253-14262.                                                                                                             | 4.0 | 1         |