Akira Hasebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8224188/publications.pdf

Version: 2024-02-01

471371 434063 1,008 41 17 31 citations h-index g-index papers 41 41 41 1162 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Relationship between Structures and Biological Activities of Mycoplasmal Diacylated Lipopeptides and Their Recognition by Toll-Like Receptors 2 and 6. Infection and Immunity, 2004, 72, 1657-1665.	1.0	163
2	Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentansinduces apoptotic cell death after NF-κB activation. Cellular Microbiology, 2004, 6, 187-199.	1.1	135
3	The N-Terminal Lipopeptide of a 44-kDa Membrane-Bound Lipoprotein of <i>Mycoplasma salivarium </i> li>ls Responsible for the Expression of Intercellular Adhesion Molecule-1 on the Cell Surface of Normal Human Gingival Fibroblasts. Journal of Immunology, 2000, 165, 6538-6544.	0.4	128
4	Mycoplasmal Lipoproteins Induce Tollâ€Like Receptor 2―and Caspasesâ€Mediated Cell Death in Lymphocytes and Monocytes. Microbiology and Immunology, 2002, 46, 265-276.	0.7	46
5	Biological Activities of Bacteroides forsythus Lipoproteins and Their Possible Pathological Roles in Periodontal Disease. Infection and Immunity, 2004, 72, 1318-1325.	1.0	46
6	The diacylated lipopeptide FSL-1 enhances phagocytosis of bacteria by macrophages through a Toll-like receptor 2-mediated signalling pathway. FEMS Immunology and Medical Microbiology, 2007, 49, 398-409.	2.7	42
7	Mycoplasma salivariuminduces interleukin-6 and interleukin-8 in human gingival fibroblasts. FEMS Immunology and Medical Microbiology, 1997, 19, 275-283.	2.7	39
8	Activation of inflammasomes in dendritic cells and macrophages by <i>Mycoplasma salivarium</i> Molecular Oral Microbiology, 2016, 31, 259-269.	1.3	36
9	Resveratrol Modulates Phagocytosis of Bacteria through an NF-κB-Dependent Gene Program. Antimicrobial Agents and Chemotherapy, 2008, 52, 121-127.	1.4	33
10	Signaling Pathways Induced by Lipoproteins Derived from <i>Mycoplasma salivarium</i> and a Synthetic Lipopeptide (FSLâ€1) in Normal Human Gingival Fibroblasts. Microbiology and Immunology, 2002, 46, 151-158.	0.7	32
11	The Tollâ€like receptor 2 (TLR2) ligand FSLâ€1 is internalized via the clathrinâ€dependent endocytic pathway triggered by CD14 and CD36 but not by TLR2. Immunology, 2010, 130, 262-272.	2.0	26
12	Isolation and Partial Purification of Macrophage- and Dendritic Cell-Activating Components from Mycoplasma arthritidis: Association with Organism Virulence and Involvement with Toll-Like Receptor 2. Infection and Immunity, 2005, 73, 6039-6047.	1.0	24
13	Transcriptional Activation of mRNA of Intercellular Adhesion Molecule 1 and Induction of Its Cell Surface Expression in Normal Human Gingival Fibroblasts by <i>Mycoplasma salivarium </i> salivarium i>and <i>Mycoplasma fermentans </i> i>lnfection and Immunity, 1999, 67, 3061-3065.	1.0	24
14	Synergic Effects of Mycoplasmal Lipopeptides and Extracellular ATP on Activation of Macrophages. Infection and Immunity, 2002, 70, 3586-3591.	1.0	20
15	Novel interactions of a microbial superantigen with TLR2 and TLR4 differentially regulate IL-17 and Th17-associated cytokines. Cellular Microbiology, 2011, 13, 374-387.	1.1	20
16	A Microbial TLR2 Agonist Imparts Macrophage-Activating Ability to Apolipoprotein A-1. Journal of Immunology, 2006, 177, 4826-4832.	0.4	19
17	Detection of Mycoplasma salivarium and Mycoplasma fermentans in synovial fluids of temporom and ibular joints of patients with disorders in the joints. FEMS Immunology and Medical Microbiology, 1998, 22, 241-246.	2.7	17
18	Activation of NLRP3 inflammasome in macrophages by mycoplasmal lipoproteins and lipopeptides. Molecular Oral Microbiology, 2018, 33, 300-311.	1.3	14

#	Article	IF	Citations
19	Inflammatory Lipoproteins Purified from a Toxigenic and Arthritogenic Strain of Mycoplasma arthritidis Are Dependent on Toll-Like Receptor 2 and CD14. Infection and Immunity, 2007, 75, 1820-1826.	1.0	13
20	Mycoplasma salivarium induces interleukin-6 and interleukin-8 in human gingival fibroblasts. FEMS Immunology and Medical Microbiology, 1997, 19, 275-283.	2.7	12
21	Detection of <i>Mycoplasma fermentans</i> in Saliva Sampled from Infants, Preschool and School Children, Adolescents and Adults by a Polymerase Chain Reactionâ€Based Assay. Microbiology and Immunology, 1999, 43, 521-525.	0.7	12
22	A Potential Pathogenic Factor from <i>Mycoplasma hominis</i> is a <scp>TLR</scp> 2â€Dependent, Macrophageâ€Activating, P50â€Related Adhesin. American Journal of Reproductive Immunology, 2014, 72, 285-295.	1.2	12
23	A role of the Ca 2+ binding site of DC-SIGN in the phagocytosis of E. coli. Biochemical and Biophysical Research Communications, 2008, 377, 367-372.	1.0	11
24	In vivo anti- and pro-tumour activities of the TLR2 ligand FSL-1. Immunobiology, 2011, 216, 891-900.	0.8	10
25	Development of tissue conditioner containing cetylpyridinium chloride montmorillonite as new antimicrobial agent: Pilot study on antimicrobial activity and biocompatibility. Journal of Prosthodontic Research, 2020, 64, 436-443.	1.1	9
26	Gasdermin Dâ \in independent release of interleukinâ \in 1 <i>\hat{I}^2</i> by living macrophages in response to mycoplasmal lipoproteins and lipopeptides. Immunology, 2020, 161, 114-122.	2.0	8
27	Gargling with povidone iodine has a short-term inhibitory effect on SARS-CoV-2 in patients with COVID-19. Journal of Hospital Infection, 2022, 123, 179-181.	1.4	8
28	Activation of nucleotide-binding domain-like receptor containing protein 3 inflammasome in dendritic cells and macrophages by Streptococcus sanguinis. Cellular Microbiology, 2017, 19, e12663.	1.1	7
29	Naringenin suppresses Tollâ€like receptor 2â€mediated inflammatory responses through inhibition of receptor clustering on lipid rafts. Food Science and Nutrition, 2021, 9, 963-972.	1.5	7
30	Involvement of suppressor of cytokine signalling-1-mediated degradation of MyD88-adaptor-like protein in the suppression of Toll-like receptor 2-mediated signalling by the murine C-type lectin SIGNR1-mediated signalling. Cellular Microbiology, 2012, 14, 40-57.	1.1	6
31	Differences in recognition of wild-type and lipoprotein-deficient strains of oralStreptococci in vitroandin vivo. Pathogens and Disease, 2013, 68, 65-77.	0.8	5
32	Tollâ€like receptor 2â€mediated modulation of growth and functions of regulatory T cells by oral streptococci. Molecular Oral Microbiology, 2013, 28, 267-280.	1.3	4
33	Ageâ€related alteration of expression and function of <scp>TLR</scp> s and <scp>NK</scp> activity in oral candidiasis. Oral Diseases, 2015, 21, 645-651.	1.5	4
34	Controlled release, antimicrobial activity, and oral mucosa irritation of cetylpyridinium chloride-montmorillonite incorporated in a tissue conditioner. Dental Materials Journal, 2022, 41, 142-149.	0.8	4
35	Differences in interleukin- $\hat{\Pi}^2$ release-inducing activity of Candida albicans toward dendritic cells and macrophages. Archives of Oral Biology, 2018, 93, 115-125.	0.8	3
36	Oral frailty and carriage of oral <i>Candida</i> in communityâ€dwelling older adults (Checkâ€up to) Tj ETQq0 (2022, 39, 49-58.	0 0 rgBT /O 0.8	verlock 10 Tf 5 3

2022, 39, 49-58.

AKIRA HASEBE

#	Article	IF	CITATIONS
37	Partial Purification and Characterization of the Active Entity Responsible for Inducing Interleukinâ€6 Production by Human Gingival Fibroblasts from <i>Mycoplasma salivarium</i> Cells. Microbiology and Immunology, 1999, 43, 1003-1008.	0.7	2
38	Mycoplasma Removal from Cell Culture Using Antimicrobial Photodynamic Therapy. Photomedicine and Laser Surgery, 2013, 31, 125-131.	2.1	2
39	A 4.1-Kilodalton Polypeptide in the Cultural Supernatant of Mycoplasma fermentans Is One of the Substances Responsible for Induction of Interleukin-6 Production by Human Gingival Fibroblasts. Infection and Immunity, 2001, 69, 7173-7177.	1.0	1
40	Antibacterial potential of colloidal platinum nanoparticles against <i>Streptococcus mutans </i> . Dental Materials Journal, 2022, 41, 368-375.	0.8	1
41	Lipoprotein Extraction from Microbial Membrane and Lipoprotein/Lipopeptide Transfection into Mammalian Cells. Methods in Molecular Biology, 2021, 2210, 195-204.	0.4	0