
Valery Combes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223944/publications.pdf Version: 2024-02-01

VALEDY COMRES

#	Article	IF	CITATIONS
1	Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic. Redox Biology, 2021, 38, 101790.	3.9	6
2	The characterization of extracellular vesicles-derived microRNAs in Thai malaria patients. Malaria Journal, 2020, 19, 285.	0.8	26
3	Targeting of externalized αB-crystallin on irradiated endothelial cells with pro-thrombotic vascular targeting agents: Potential applications for brain arteriovenous malformations. Thrombosis Research, 2020, 189, 119-127.	0.8	3
4	Citrulline protects mice from experimental cerebral malaria by ameliorating hypoargininemia, urea cycle changes and vascular leak. PLoS ONE, 2019, 14, e0213428.	1.1	11
5	Ovarian Hyperstimulation Reduces Vascular Endothelial Growth Factor-A During Uterine Receptivity. Reproductive Sciences, 2019, 26, 259-268.	1.1	13
6	The parasitic 68-mer peptide FhHDM-1 inhibits mixed granulocytic inflammation and airway hyperreactivity in experimental asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 2316-2319.	1.5	9
7	Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria. Malaria Journal, 2018, 17, 192.	0.8	27
8	Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response. Blood, 2017, 129, 1669-1679.	0.6	39
9	Infrared spectroscopic characterization of monocytic microvesicles (microparticles) released upon lipopolysaccharide stimulation. FASEB Journal, 2017, 31, 2817-2827.	0.2	25
10	Targeting the master regulator mTOR: a new approach to prevent the neurological of consequences of parasitic infections?. Parasites and Vectors, 2017, 10, 581.	1.0	5
11	Exploring experimental cerebral malaria pathogenesis through the characterisation of host-derived plasma microparticle protein content. Scientific Reports, 2016, 6, 37871.	1.6	34
12	Plasma levels of endothelial and B-cell-derived microparticles are restored by fingolimod treatment in multiple sclerosis patients. Multiple Sclerosis Journal, 2016, 22, 1883-1887.	1.4	27
13	Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265. Microbes and Infection, 2016, 18, 57-67.	1.0	89
14	DIANNEXIN DOWN-MODULATES TNF-INDUCED ENDOTHELIAL MICROPARTICLE RELEASE BY BLOCKING MEMBRANE BUDDING PROCESS. International Journal of Innovative Medicine and Health Science, 2016, 7, 1-11.	2.0	10
15	Subtype Distribution of Blastocystis in Communities along the Chao Phraya River, Thailand. Korean Journal of Parasitology, 2016, 54, 455-460.	0.5	17
16	Immuno-analysis of microparticles: probing at the limits of detection. Scientific Reports, 2015, 5, 16314.	1.6	27
17	VEGF111: new insights in tissue invasion. Frontiers in Physiology, 2015, 6, 2.	1.3	6
18	MicroRNAs and Malaria - A Dynamic Interaction Still Incompletely Understood. Journal of Neuroinfectious Diseases, 2015, 6, .	0.2	6

#	Article	IF	CITATIONS
19	Cerebral malaria: gamma-interferon redux. Frontiers in Cellular and Infection Microbiology, 2014, 4, 113.	1.8	55
20	Real-Time Imaging Reveals the Dynamics of Leukocyte Behaviour during Experimental Cerebral Malaria Pathogenesis. PLoS Pathogens, 2014, 10, e1004236.	2.1	67
21	Production, Fate and Pathogenicity of Plasma Microparticles in Murine Cerebral Malaria. PLoS Pathogens, 2014, 10, e1003839.	2.1	72
22	Potential Efficacy of Citicoline as Adjunct Therapy in Treatment of Cerebral Malaria. Antimicrobial Agents and Chemotherapy, 2014, 58, 602-605.	1.4	7
23	Endothelial Microparticles Interact with and Support the Proliferation of T Cells. Journal of Immunology, 2014, 193, 3378-3387.	0.4	71
24	Endotoxin-Induced Monocytic Microparticles Have Contrasting Effects on Endothelial Inflammatory Responses. PLoS ONE, 2014, 9, e91597.	1.1	35
25	Experimental Models of Microvascular Immunopathology: The Example of Cerebral Malaria. Journal of Neuroinfectious Diseases, 2014, 5, .	0.2	4
26	Effects of Aggregatibacter actinomycetemcomitans leukotoxin on endothelial cells. Microbial Pathogenesis, 2013, 61-62, 43-50.	1.3	20
27	Cytoadherence of Plasmodium berghei-Infected Red Blood Cells to Murine Brain and Lung Microvascular Endothelial Cells <i>In Vitro</i> . Infection and Immunity, 2013, 81, 3984-3991.	1.0	49
28	Microparticles from Mycobacteria-Infected Macrophages Promote Inflammation and Cellular Migration. Journal of Immunology, 2013, 190, 669-677.	0.4	50
29	Cooperation between β―and γâ€cytoplasmic actins in the mechanical regulation of endothelial microparticle formation. FASEB Journal, 2013, 27, 672-683.	0.2	44
30	Crossing the wall: The opening of endothelial cell junctions during infectious diseases. International Journal of Biochemistry and Cell Biology, 2013, 45, 1165-1173.	1.2	15
31	Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biology, 2013, 10, 1333-1344.	1.5	210
32	The Brain Microvascular Endothelium Supports T Cell Proliferation and Has Potential for Alloantigen Presentation. PLoS ONE, 2013, 8, e52586.	1.1	40
33	Endothelial Cells Potentiate Interferon-Î ³ Production in a Novel Tripartite Culture Model of Human Cerebral Malaria. PLoS ONE, 2013, 8, e69521.	1.1	15
34	Microparticleâ€associated nucleic acids mediate trait dominance in cancer. FASEB Journal, 2012, 26, 420-429.	0.2	108
35	Microparticles and their emerging role in cancer multidrug resistance. Cancer Treatment Reviews, 2012, 38, 226-234.	3.4	146
36	Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. Journal of Cellular and Molecular Medicine, 2012, 16, 1731-1738.	1.6	76

#	Article	IF	CITATIONS
37	The crossroads of neuroinflammation in infectious diseases: endothelial cells and astrocytes. Trends in Parasitology, 2012, 28, 311-319.	1.5	48
38	Platelets and microparticles in cerebral malaria: the unusual suspects. Drug Discovery Today Disease Mechanisms, 2011, 8, e15-e23.	0.8	22
39	CNS Hypoxia Is More Pronounced in Murine Cerebral than Noncerebral Malaria and Is Reversed by Erythropoietin. American Journal of Pathology, 2011, 179, 1939-1950.	1.9	42
40	Flow Cytometric Analysis of Microparticles. Methods in Molecular Biology, 2011, 699, 337-354.	0.4	27
41	Microparticles as Immune Regulators in Infectious Disease ? An Opinion. Frontiers in Immunology, 2011, 2, 67.	2.2	17
42	Coincident parasite and CD8 T cell sequestration is required for development of experimental cerebral malaria. International Journal for Parasitology, 2011, 41, 155-163.	1.3	55
43	In vitro culture of Plasmodium berghei-ANKA maintains infectivity of mouse erythrocytes inducing cerebral malaria. Malaria Journal, 2011, 10, 346.	0.8	17
44	Differential MicroRNA Expression in Experimental Cerebral and Noncerebral Malaria. Infection and Immunity, 2011, 79, 2379-2384.	1.0	51
45	Circulating Red Cell–derived Microparticles in Human Malaria. Journal of Infectious Diseases, 2011, 203, 700-706.	1.9	138
46	Quantitation of brain edema and localisation of aquaporin 4 expression in relation to susceptibility to experimental cerebral malaria. International Journal of Clinical and Experimental Pathology, 2011, 4, 566-74.	0.5	25
47	Biochemical markers of nutritional status and childhood malaria severity in Cameroon. British Journal of Nutrition, 2010, 104, 886-892.	1.2	18
48	Rapid activation of endothelial cells enables Plasmodium falciparum adhesion to platelet-decorated von Willebrand factor strings. Blood, 2010, 115, 1472-1474.	0.6	112
49	Elevated Cell-Specific Microparticles Are a Biological Marker for Cerebral Dysfunctions in Human Severe Malaria. PLoS ONE, 2010, 5, e13415.	1.1	130
50	Plasmodium falciparum Adhesion on Human Brain Microvascular Endothelial Cells Involves Transmigration-Like Cup Formation and Induces Opening of Intercellular Junctions. PLoS Pathogens, 2010, 6, e1001021.	2.1	90
51	Parasite-Derived Plasma Microparticles Contribute Significantly to Malaria Infection-Induced Inflammation through Potent Macrophage Stimulation. PLoS Pathogens, 2010, 6, e1000744.	2.1	194
52	Microvesiculation and cell interactions at the brain–endothelial interface in cerebral malaria pathogenesis. Progress in Neurobiology, 2010, 91, 140-151.	2.8	82
53	HDL Interfere with the Binding of T Cell Microparticles to Human Monocytes to Inhibit Pro-Inflammatory Cytokine Production. PLoS ONE, 2010, 5, e11869.	1.1	38
54	Platelet microparticles: a new player in malaria parasite cytoadherence to human brain endothelium. FASEB Journal, 2009, 23, 3449-3458.	0.2	103

#	Article	IF	CITATIONS
55	Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells. Leukemia, 2009, 23, 1643-1649.	3.3	277
56	Citicoline (CDP-choline): What role in the treatment of complications of infectious diseases. International Journal of Biochemistry and Cell Biology, 2009, 41, 1467-1470.	1.2	13
57	Platelet-endothelial cell interactions in cerebral malaria: The end of a cordial understanding. Thrombosis and Haemostasis, 2009, 102, 1093-1102.	1.8	64
58	Physiopathologic Factors Resulting in Poor Outcome in Childhood Severe Malaria in Cameroon. Pediatric Infectious Disease Journal, 2009, 28, 1081-1084.	1.1	6
59	The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29, 4392-4402.	5.7	158
60	Clinical Presentation, Haematological Indices and Management of Children with Severe and Uncomplicated Malaria in Douala, Cameroon. Pakistan Journal of Biological Sciences, 2008, 11, 2401-2406.	0.2	11
61	Quantitation of cell-derived microparticles in plasma using flow rate based calibration. Southeast Asian Journal of Tropical Medicine and Public Health, 2008, 39, 146-53.	1.0	15
62	The Endothelium in Cerebral Malaria: Both a Target Cell and a Major Player. , 2007, , 1303-1310.		1
63	Cell vesiculation and immunopathology: implications in cerebral malaria. Microbes and Infection, 2006, 8, 2305-2316.	1.0	63
64	Cerebral malaria: role of microparticles and platelets in alterations of the blood–brain barrier. International Journal for Parasitology, 2006, 36, 541-546.	1.3	121
65	A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends in Parasitology, 2006, 22, 503-508.	1.5	351
66	Platelets Potentiate Brain Endothelial Alterations Induced by Plasmodium falciparum. Infection and Immunity, 2006, 74, 645-653.	1.0	133
67	Plasmodium falciparum rhoptry protein RSP2 triggers destruction of the erythroid lineage. Blood, 2005, 106, 3632-3638.	0.6	49
68	Inhibition of Endothelial Activation: A New Way to Treat Cerebral Malaria?. PLoS Medicine, 2005, 2, e245.	3.9	62
69	ABCA1 Gene Deletion Protects against Cerebral Malaria. American Journal of Pathology, 2005, 166, 295-302.	1.9	158
70	Cerebral malaria: Which parasite? Which model?. Drug Discovery Today: Disease Models, 2005, 2, 141-147.	1.2	17
71	Cerebral Malaria - A Neurovascular Pathology with Many Riddles Still to be Solved. Current Neurovascular Research, 2004, 1, 91-110.	0.4	75
72	Pathogenic Role of P-Selectin in Experimental Cerebral Malaria. American Journal of Pathology, 2004, 164, 781-786.	1.9	58

5

#	Article	IF	CITATIONS
73	Endothelial microparticles: a potential contribution to the thrombotic complications of the antiphospholipid syndrome. Thrombosis and Haemostasis, 2004, 91, 667-673.	1.8	218
74	Circulating Endothelial Microparticles in Malawian Children With Severe Falciparum Malaria Complicated With ComaRESEARCH LETTERS. JAMA - Journal of the American Medical Association, 2004, 291, 2542-4.	3.8	176
75	Pathophysiology of Cerebral Malaria. Annals of the New York Academy of Sciences, 2003, 992, 30-38.	1.8	65
76	Type 1 And Type 2 Diabetic Patients Display Different Patterns of Cellular Microparticles. Diabetes, 2002, 51, 2840-2845.	0.3	351
77	In vitro generation of endothelial microparticles and possible prothrombotic activity in patients with lupus anticoagulant. Journal of Clinical Investigation, 1999, 104, 93-102.	3.9	647
78	CD146: biosynthesis and production of a soluble form in human cultured endothelial cells. FEBS Letters, 1998, 421, 12-14.	1.3	43