
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dipolar Cyclization/Fragmentation Strategy for the Catalytic Asymmetric Synthesis of Chiral Eight-Membered Lactams. CCS Chemistry, 2022, 4, 2620-2629.	7.8	19
2	Photoredox-Enabled Chromium-Catalyzed Alkene Diacylations. ACS Catalysis, 2022, 12, 1879-1885.	11.2	32
3	Synthesis of Chiral Endocyclic Allenes by Palladium atalyzed Asymmetric Annulation Followed by Cope Rearrangement. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
4	High-order dipolar annulations with metal-containing reactive dipoles. Chemical Society Reviews, 2022, 51, 4146-4174.	38.1	53
5	Photoassisted Cobalt-Catalyzed Asymmetric Reductive Grignard-Type Addition of Aryl Iodides. Journal of the American Chemical Society, 2022, 144, 8347-8354.	13.7	52
6	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	9.0	64
7	Intercepting a labile anti-ï€-allyl-iridium complex before its isomerization. CheM, 2021, 7, 552-554.	11.7	0
8	Enantioselective Radical Carbocyanation of 1,3-Dienes via Photocatalytic Generation of Allylcopper Complexes. Journal of the American Chemical Society, 2021, 143, 4168-4173.	13.7	101
9	Enantioselective trapping of palladium-stabilized oxo-1,4-dipoles with photochemically generated ketenes. Science Bulletin, 2021, 66, 1719-1722.	9.0	32
10	Synthesis of hydroindoles <i>via</i> desymmetric [3+2] cycloadditions of <i>para</i> -quinamines with photogenerated ketenes. Chemical Communications, 2021, 57, 8496-8499.	4.1	12
11	Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention. Chemical Society Reviews, 2021, 50, 12808-12827.	38.1	94
12	A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with <i>N</i> -acylpyrazoles. Chemical Communications, 2021, 57, 13566-13569.	4.1	18
13	Utilizing Vinylcyclopropane Reactivity: Palladium atalyzed Asymmetric [5+2] Dipolar Cycloadditions. Angewandte Chemie, 2020, 132, 17582-17587.	2.0	12
14	Light opens a new window for N-heterocyclic carbene catalysis. Chemical Science, 2020, 11, 10605-10613.	7.4	114
15	Light Up the Transition Metal-Catalyzed Single-Electron Allylation. Trends in Chemistry, 2020, 2, 764-775.	8.5	27
16	Asymmetric Deoxygenative Cyanation of Benzyl Alcohols Enabled by Synergistic Photoredox and Copper Catalysis ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1671-1675.	4.9	24
17	Palladium atalyzed Asymmetric [8+2] Dipolar Cycloadditions of Vinyl Carbamates and Photogenerated Ketenes. Angewandte Chemie - International Edition, 2020, 59, 14096-14100.	13.8	82
18	Palladium atalyzed Asymmetric [8+2] Dipolar Cycloadditions of Vinyl Carbamates and Photogenerated Ketenes. Angewandte Chemie, 2020, 132, 14200-14204.	2.0	19

#	Article	IF	CITATIONS
19	Photoinduced palladium-catalyzed carbonylation of halides with weak nucleophiles. Science Bulletin, 2020, 65, 1696-1698.	9.0	2
20	Utilizing Vinylcyclopropane Reactivity: Palladium atalyzed Asymmetric [5+2] Dipolar Cycloadditions. Angewandte Chemie - International Edition, 2020, 59, 17429-17434.	13.8	62
21	Visibleâ€Lightâ€Induced Organic Photochemical Reactions through Energyâ€Transfer Pathways. Angewandte Chemie - International Edition, 2019, 58, 1586-1604.	13.8	739
22	Cobalt(II)-Catalyzed Alkoxycarbonylation of Aliphatic Amines via C–N Bond Activation. Organic Letters, 2019, 21, 6919-6923.	4.6	31
23	Inverseâ€Electronâ€Demand Palladiumâ€Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,Sâ€Ligand and Hydrogen Bonding. Angewandte Chemie, 2019, 131, 11129-11133.	2.0	15
24	Exploration of a Chiral Cobalt Catalyst for Visibleâ€Lightâ€Induced Enantioselective Radical Conjugate Addition. Angewandte Chemie - International Edition, 2019, 58, 13375-13379.	13.8	101
25	Exploration of a Chiral Cobalt Catalyst for Visibleâ€Lightâ€Induced Enantioselective Radical Conjugate Addition. Angewandte Chemie, 2019, 131, 13509-13513.	2.0	13
26	Organocatalysis Combined with Photocatalysis. Topics in Current Chemistry, 2019, 377, 37.	5.8	16
27	A photoinduced Wolff rearrangement/Pd-catalyzed [3+2] cycloaddition sequence: an unexpected route to tetrahydrofurans. Chemical Communications, 2019, 55, 2031-2034.	4.1	51
28	Alkenylation of unactivated alkyl bromides through visible light photocatalysis. Chemical Communications, 2019, 55, 107-110.	4.1	61
29	Synergetic iridium and amine catalysis enables asymmetric [4+2] cycloadditions of vinyl aminoalcohols with carbonyls. Nature Communications, 2019, 10, 2716.	12.8	91
30	Inverseâ€Electronâ€Demand Palladiumâ€Catalyzed Asymmetric [4+2] Cycloadditions Enabled by Chiral P,Sâ€Ligand and Hydrogen Bonding. Angewandte Chemie - International Edition, 2019, 58, 11013-11017.	13.8	77
31	Visible-Light-Driven Organic Photochemical Reactions in the Absence of External Photocatalysts. Synthesis, 2019, 51, 3021-3054.	2.3	110
32	Recent advances in the catalytic asymmetric alkylation of stabilized phosphorous ylides. Chemical Communications, 2019, 55, 8716-8721.	4.1	12
33	5 Decarboxylative Coupling Reactions. , 2019, , .		2
34	Practical heterogeneous photoredox/nickel dual catalysis for C–N and C–O coupling reactions. Chemical Communications, 2019, 55, 4853-4856.	4.1	93
35	Asymmetric Propargylic Radical Cyanation Enabled by Dual Organophotoredox and Copper Catalysis. Journal of the American Chemical Society, 2019, 141, 6167-6172.	13.7	174
36	Practical C–P bond formation via heterogeneous photoredox and nickel synergetic catalysis. Chinese Journal of Catalysis, 2019, 40, 1841-1846.	14.0	12

#	Article	IF	CITATIONS
37	Visible light-driven organic photochemical synthesis in China. Science China Chemistry, 2019, 62, 24-57.	8.2	374
38	Deaminative (Carbonylative) Alkylâ€Heckâ€ŧype Reactions Enabled by Photocatalytic Câ^'N Bond Activation. Angewandte Chemie, 2019, 131, 2424-2428.	2.0	23
39	Deaminative (Carbonylative) Alkylâ€Heckâ€ŧype Reactions Enabled by Photocatalytic Câ^'N Bond Activation. Angewandte Chemie - International Edition, 2019, 58, 2402-2406.	13.8	148
40	Enantioselective Trapping of Pd-Containing 1,5-Dipoles by Photogenerated Ketenes: Access to 7-Membered Lactones Bearing Chiral Quaternary Stereocenters. Journal of the American Chemical Society, 2019, 141, 133-137.	13.7	182
41	Copper-catalyzed decarboxylative cyclization <i>via</i> tandem C–P and C–N bond formation: access to 2-phosphorylmethyl indoles. Chemical Communications, 2018, 54, 3154-3157.	4.1	39
42	Transition-metal-catalyzed cyclization reactions using vinyl and ethynyl benzoxazinones as dipole precursors. Tetrahedron Letters, 2018, 59, 1521-1530.	1.4	116
43	Umpolung of Imines Enables Catalytic Asymmetric Regioâ€reversed [3+2] Cycloadditions of Iminoesters with Nitroolefins. Angewandte Chemie, 2018, 130, 5990-5994.	2.0	14
44	Umpolung of Imines Enables Catalytic Asymmetric Regioâ€reversed [3+2] Cycloadditions of Iminoesters with Nitroolefins. Angewandte Chemie - International Edition, 2018, 57, 5888-5892.	13.8	61
45	Enantioselective Di-/Perfluoroalkylation of β-Ketoesters Enabled by Cooperative Photoredox/Nickel Catalysis. Organic Letters, 2018, 20, 461-464.	4.6	72
46	Catalyst-Controlled Regioselective Acylation of β-Ketoesters with α-Diazo Ketones Induced by Visible Light. Organic Letters, 2018, 20, 7278-7282.	4.6	31
47	Dual photoredox and nickel-catalyzed desymmetric C–O coupling reactions: visible light-mediated enantioselective synthesis of 1,4-benzodioxanes. Organic Chemistry Frontiers, 2018, 5, 3098-3102.	4.5	39
48	Synthesis of 3,3′-Biindoles through a Copper-Catalyzed Friedel–Crafts Propargylation/Hydroamination/Aromatization Sequence. Organic Letters, 2018, 20, 3237-3240.	4.6	45
49	Nonâ€Bonding Interactions Enable the Selective Formation of Branched Products in Palladium atalyzed Allylic Substitution Reactions. Chemistry - an Asian Journal, 2018, 13, 2174-2183.	3.3	40
50	Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts. Acta Chimica Sinica, 2018, 76, 838.	1.4	28
51	Beyond sulfide-centric catalysis: recent advances in the catalytic cyclization reactions of sulfur ylides. Chemical Society Reviews, 2017, 46, 4135-4149.	38.1	229
52	Bifunctional Photocatalysts for Enantioselective Aerobic Oxidation of β-Ketoesters. Journal of the American Chemical Society, 2017, 139, 63-66.	13.7	207
53	Synthesis of Polysubstituted Pyrroles through a Formal [4 + 1] Cycloaddition/E1cb Elimination/Aromatization Sequence of Sulfur Ylides and α,β-Unsaturated Imines. Journal of Organic Chemistry, 2017, 82, 12134-12140.	3.2	36
54	Sequential Visible-Light Photoactivation and Palladium Catalysis Enabling Enantioselective [4+2] Cycloadditions. Journal of the American Chemical Society, 2017, 139, 14707-14713.	13.7	213

#	Article	IF	CITATIONS
55	Enantioconvergent Copper Catalysis: <i>In Situ</i> Generation of the Chiral Phosphorus Ylide and Its Wittig Reactions. Journal of the American Chemical Society, 2017, 139, 12847-12854.	13.7	81
56	Hydrogen Bond Direction Enables Palladium-Catalyzed Branch- and Enantioselective Allylic Aminations and Beyond. Organic Letters, 2017, 19, 4094-4097.	4.6	53
57	Divergent Synthesis of Polycyclic Indolines: Copper-Catalyzed Cascade Reactions of Propargylic Carbamates and Indoles. Organic Letters, 2017, 19, 4098-4101.	4.6	68
58	Frontispiece: Visible-Light-Driven Photocatalytic Activation of Inert Sulfur Ylides for 3-Acyl Oxindole Synthesis. Chemistry - A European Journal, 2016, 22, .	3.3	0
59	Ironâ€Catalyzed Decarboxylative (4+1) Cycloadditions: Exploiting the Reactivity of Ambident Ironâ€Stabilized Intermediates. Angewandte Chemie, 2016, 128, 2890-2894.	2.0	23
60	Highly Stereoselective [3+2] Cycloadditions of Chiral Palladiumâ€Containing <i>N</i> ¹ â€1,3â€Dipoles: A Divergent Approach to Enantioenriched Spirooxindoles. Chemistry - A European Journal, 2016, 22, 6243-6247.	3.3	69
61	Visible Light Photocatalytic Radical–Radical Cross-Coupling Reactions of Amines and Carbonyls: A Route to 1,2-Amino Alcohols. Journal of Organic Chemistry, 2016, 81, 7237-7243.	3.2	76
62	Photocatalytic Decarboxylative Hydroxylation of Carboxylic Acids Driven by Visible Light and Using Molecular Oxygen. Journal of Organic Chemistry, 2016, 81, 7250-7255.	3.2	60
63	Ironâ€Catalyzed Decarboxylative (4+1) Cycloadditions: Exploiting the Reactivity of Ambident Ironâ€Stabilized Intermediates. Angewandte Chemie - International Edition, 2016, 55, 2840-2844.	13.8	102
64	A Copperâ€Catalyzed Decarboxylative Amination/Hydroamination Sequence: Switchable Synthesis of Functionalized Indoles. Angewandte Chemie - International Edition, 2016, 55, 12422-12426.	13.8	91
65	A Copperâ€Catalyzed Decarboxylative Amination/Hydroamination Sequence: Switchable Synthesis of Functionalized Indoles. Angewandte Chemie, 2016, 128, 12610-12614.	2.0	26
66	Catalytic Asymmetric Allylation of 3â€Aryloxindoles by Merging Palladium Catalysis and Asymmetric Hâ€Bonding Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 2594-2598.	4.3	27
67	Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. Journal of the American Chemical Society, 2016, 138, 10128-10131.	13.7	303
68	Exploration of Visible-Light Photocatalysis in Heterocycle Synthesis and Functionalization: Reaction Design and Beyond. Accounts of Chemical Research, 2016, 49, 1911-1923.	15.6	533
69	Formal [3 + 2] Cycloadditions via Indole Activation: A Route to Pyrroloindolines and Furoindolines. Journal of Organic Chemistry, 2016, 81, 10491-10498.	3.2	36
70	Catalytic Asymmetric [4 + 1] Annulation of Sulfur Ylides with Copper–Allenylidene Intermediates. Journal of the American Chemical Society, 2016, 138, 8360-8363.	13.7	225
71	P,Sâ€Ligands for the Asymmetric Construction of Quaternary Stereocenters in Palladiumâ€Catalyzed Decarboxylative [4+2] Cycloadditions. Angewandte Chemie, 2016, 128, 2240-2244.	2.0	40
72	Visibleâ€Lightâ€Driven Photocatalytic Activation of Inert Sulfur Ylides for 3â€Acyl Oxindole Synthesis. Chemistry - A European Journal, 2016, 22, 8432-8437.	3.3	35

#	Article	IF	CITATIONS
73	P,Sâ€Ligands for the Asymmetric Construction of Quaternary Stereocenters in Palladium atalyzed Decarboxylative [4+2] Cycloadditions. Angewandte Chemie - International Edition, 2016, 55, 2200-2204.	13.8	158
74	Visible light photoredox-controlled reactions of N-radicals and radical ions. Chemical Society Reviews, 2016, 45, 2044-2056.	38.1	952
75	Visible light-photocatalysed carbazole synthesis via a formal (4+2) cycloaddition of indole-derived bromides and alkynes. Chemical Communications, 2016, 52, 5128-5131.	4.1	64
76	Formal [4+1] Annulation Reactions in the Synthesis of Carbocyclic and Heterocyclic Systems. Chemical Reviews, 2015, 115, 5301-5365.	47.7	350
77	Room Temperature CP Bond Formation Enabled by Merging Nickel Catalysis and Visibleâ€Lightâ€Induced Photoredox Catalysis. Chemistry - A European Journal, 2015, 21, 4962-4965.	3.3	170
78	Relay Iron/Chiral BrÃ,nsted Acid Catalysis: Enantioselective Hydrogenation of Benzoxazinones. Journal of the American Chemical Society, 2015, 137, 2763-2768.	13.7	96
79	Visible-light-induced photocatalytic oxytrifluoromethylation of N-allylamides for the synthesis of CF ₃ -containing oxazolines and benzoxazines. Chemical Communications, 2015, 51, 3537-3540.	4.1	134
80	[3 + 2] Cycloaddition/Oxidative Aromatization Sequence via Photoredox Catalysis: One-Pot Synthesis of Oxazoles from 2 <i>H</i> -Azirines and Aldehydes. Organic Letters, 2015, 17, 4070-4073.	4.6	120
81	Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 11196-11199.	13.8	280
82	Phototandem Catalysis: Efficient Synthesis of 3â€Esterâ€3â€hydroxyâ€2â€oxindoles by a Visible Lightâ€Induced Cyclization of Diazoamides through an Aerobic Oxidation Sequence. Chemistry - an Asian Journal, 2015, 10, 124-128.	3.3	39
83	Metalâ€Free, Roomâ€Temperature, Radical Alkoxycarbonylation of Aryldiazonium Salts through Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 2265-2269.	13.8	163
84	Redoxâ€Neutral αâ€Allylation of Amines by Combining Palladium Catalysis and Visible‣ight Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 1625-1628.	13.8	241
85	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie, 2014, 126, 5759-5762.	2.0	65
86	<i>De Novo</i> Synthesis of l³,γâ€Ðisubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence. Advanced Synthesis and Catalysis, 2014, 356, 2787-2793.	4.3	74
87	Organocatalytic Asymmetric Conjugate Addition of 2â€Oxindoleâ€3â€Carboxylate Esters to 2â€Phthalimido Acrylates: Efficient Synthesis of C ^γ â€ŧetrasubstituted αâ€Amino Acid Derivatives. Asian Journal of Organic Chemistry, 2014, 3, 530-535.	2.7	9
88	Enantioselective Cascade Michael Addition/Cyclization Reactions of 3â€Nitroâ€2 <i>H</i> â€Chromenes with 3â€Isothiocyanato Oxindoles: Efficient Synthesis of Functionalized Polycyclic Spirooxindoles. Chemistry - A European Journal, 2014, 20, 3415-3420.	3.3	92
89	Visibleâ€Lightâ€Induced Cĩ£¿S Bond Activation: Facile Access to 1,4â€Diketones from βâ€Ketosulfones. Chemistr - A European Journal, 2014, 20, 3045-3049.	У _{3.3}	80
90	Enantio- and Diastereoselective Synthesis of Spiro-epoxyoxindoles. Journal of Organic Chemistry, 2014, 79, 3924-3929.	3.2	41

#	Article	IF	CITATIONS
91	Visibleâ€Lightâ€Induced Formal [3+2] Cycloaddition for Pyrrole Synthesis under Metalâ€Free Conditions. Angewandte Chemie - International Edition, 2014, 53, 5653-5656.	13.8	271
92	Enantioselective organocatalytic oxa-Michael addition of oximes to β-CF ₃ -β-disubstituted nitroalkenes: efficient synthesis of β-amino-α-trifluoromethyl alcohols. Organic and Biomolecular Chemistry, 2014, 12, 1057-1060.	2.8	34
93	Asymmetric trapping of zwitterionic intermediates by sulphur ylides in a palladium-catalysed decarboxylation-cycloaddition sequence. Nature Communications, 2014, 5, 5500.	12.8	152
94	Synthesis of 2â€Substituted Indoles through Visible Lightâ€Induced Photocatalytic Cyclizations of Styryl Azides. Advanced Synthesis and Catalysis, 2014, 356, 2807-2812.	4.3	62
95	Aerobic oxidative C–B bond cleavage of arylboronic acids mediated by methylhydrazines. Organic Chemistry Frontiers, 2014, 1, 151.	4.5	21
96	Rational design of sulfoxide–phosphine ligands for Pd-catalyzed enantioselective allylic alkylation reactions. Chemical Communications, 2014, 50, 2873-2875.	4.1	38
97	Palladium/sulfoxide–phosphine-catalyzed highly enantioselective allylic etherification and amination. Chemical Communications, 2014, 50, 9550-9553.	4.1	46
98	Visible-light-induced photocatalytic formyloxylation reactions of 3-bromooxindoles with water and DMF: the scope and mechanism. Green Chemistry, 2014, 16, 3787-3795.	9.0	47
99	Photocatalytic aerobic oxidation/semipinacol rearrangement sequence: a concise route to the core of pseudoindoxyl alkaloids. Tetrahedron Letters, 2014, 55, 4648-4652.	1.4	93
100	Enantioselective Synthesis of Tetrahydrofuran Derivatives by Sequential Henry Reaction and Iodocyclization of γ,Ĵ´â€Unsaturated Alcohols. European Journal of Organic Chemistry, 2014, 2014, 4714-4719.	2.4	19
101	De Novo Synthesis of Imidazoles by Visible‣ightâ€Induced Photocatalytic Aerobic Oxidation/[3+2] Cycloaddition/Aromatization Cascade. Chemistry - an Asian Journal, 2014, 9, 2432-2435.	3.3	56
102	Direct sp3 C–H acroleination of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with nucleophilic catalysis. Organic and Biomolecular Chemistry, 2014, 12, 2037-2040.	2.8	60
103	Synthesis of CF ₃ -Containing 3,3′-Cyclopropyl Spirooxindoles by Sequential [3 + 2] Cycloaddition/Ring Contraction of Ylideneoxindoles with 2,2,2-Trifluorodiazoethane. Journal of Organic Chemistry, 2014, 79, 2296-2302.	3.2	92
104	Desulfonylation of Tosyl Amides through Catalytic Photoredox Cleavage of NS Bond Under Visibleâ€Light Irradiation. Chemistry - an Asian Journal, 2013, 8, 1090-1094.	3.3	56
105	[4+3] Cycloaddition of in situ generated azoalkenes with C,N-cyclic azomethine imines: efficient synthesis of tetrazepine derivatives. Chemical Communications, 2013, 49, 7905.	4.1	106
106	Visibleâ€Lightâ€Driven Photoredox Catalysis in the Construction of Carbocyclic and Heterocyclic Ring Systems. European Journal of Organic Chemistry, 2013, 2013, 6755-6770.	2.4	173
107	Construction of Optically Active Indolines by Formal [4+1] Annulation of Sulfur Ylides and <i>N</i> â€(<i>ortho</i> â€Chloromethyl)aryl Amides. Chemistry - A European Journal, 2013, 19, 8401-8404.	3.3	92
108	Copperâ€Catalyzed Enantioselective Inverse Electronâ€Demand Heteroâ€Diels–Alder Reactions of Diazadienes with Enol Ethers: Efficient Synthesis of Chiral Pyridazines. Advanced Synthesis and Catalysis, 2013, 355, 3539-3544.	4.3	80

#	Article	IF	CITATIONS
109	Highly Enantioselective Friedel–Crafts Alkylation/ <i>N</i> â€Hemiacetalization Cascade Reaction with Indoles. Angewandte Chemie - International Edition, 2013, 52, 3250-3254.	13.8	163
110	Formal [4+1] cycloaddition of camphor-derived sulfonium salts with aldimines: enantioselective synthesis of 2,3-dihydrobenzofurans. Tetrahedron, 2013, 69, 3810-3816.	1.9	27
111	Ironâ€Catalyzed Hydrogenation for the In Situ Regeneration of an NAD(P)H Model: Biomimetic Reduction of αâ€Ketoâ€/αâ€Iminoesters. Angewandte Chemie - International Edition, 2013, 52, 8382-8386.	13.8	85
112	Enantioselective Construction of Oxa- and Aza-Angular Triquinanes through Tandem [4 + 1]/[3 + 2] Cycloaddition of Sulfur Ylides and Nitroolefins. Organic Letters, 2013, 15, 542-545.	4.6	50
113	Enantioselective Synthesis of Highly Substituted Chromans by a Zinc(II)-Catalyzed Tandem Friedel-Crafts Alkylation/Michael Addition Reaction. Synthesis, 2013, 45, 601-608.	2.3	7
114	Dual Activation in Organocatalysis: Design of Tunable and Bifunctional Organocatalysts and Their Applications in Enantioselective Reactions. Synlett, 2012, 23, 490-508.	1.8	26
115	Design of chiral sulfoxide–Schiff base hybrids and their application in Cu-catalyzed asymmetric Henry reactions. Chemical Communications, 2012, 48, 5596.	4.1	47
116	Oxidative cross-esterification of dithiolanes with alcohols through a cross-dehydrogenative coupling (CDC)/deprotection sequence. Organic and Biomolecular Chemistry, 2012, 10, 506-508.	2.8	17
117	An efficient synthesis of enol phosphates via organic base-promoted addition ofÂphosphites to 4-oxo-enoates. Tetrahedron, 2012, 68, 6032-6037.	1.9	32
118	Synthesis of Indoles through Highly Efficient Cascade Reactions of Sulfur Ylides and <i>N</i> â€{ <i>ortho</i> hloromethyl)aryl Amides. Angewandte Chemie - International Edition, 2012, 51, 9137-9140.	13.8	135
119	Highly Chemoselective Metal-Free Reduction of Phosphine Oxides to Phosphines. Journal of the American Chemical Society, 2012, 134, 18325-18329.	13.7	193
120	Enantioselective Cascade Reactions of Stable Sulfur Ylides and Nitroolefins through an Axial-to-Central Chirality Transfer Strategy. Journal of Organic Chemistry, 2012, 77, 1072-1080.	3.2	33
121	Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures. Accounts of Chemical Research, 2012, 45, 1278-1293.	15.6	502
122	Hydrogenâ€Bondâ€Mediated Asymmetric Cascade Reaction of Stable Sulfur Ylides with Nitroolefins: Scope, Application and Mechanism. Chemistry - A European Journal, 2012, 18, 4073-4079.	3.3	48
123	Highly Efficient Aerobic Oxidative Hydroxylation of Arylboronic Acids: Photoredox Catalysis Using Visible Light. Angewandte Chemie - International Edition, 2012, 51, 784-788.	13.8	442
124	Asymmetric Cyclopropanation of β,γ-Unsaturated α-Ketoesters with Stabilized Sulfur Ylides Catalyzed by <i>C</i> ₂ -Symmetric Ureas. Journal of Organic Chemistry, 2011, 76, 281-284.	3.2	73
125	Visible light-induced intramolecular cyclization reactions of diamines: a new strategy to construct tetrahydroimidazoles. Chemical Communications, 2011, 47, 8337.	4.1	164
126	Enantioselective Synthesis of Chromans with a Quaternary Stereogenic Centre through Catalytic Asymmetric Cascade Reactions. ACS Catalysis, 2011, 1, 221-226.	11.2	16

#	Article	IF	CITATIONS
127	Organocatalytic Multiple Cascade Reactions: A New Strategy for the Construction of Enantioenriched Tetrahydrocarbazoles. Advanced Synthesis and Catalysis, 2011, 353, 617-623.	4.3	69
128	Visibleâ€Lightâ€Induced Oxidation/[3+2] Cycloaddition/Oxidative Aromatization Sequence: A Photocatalytic Strategy To Construct Pyrrolo[2,1â€ <i>a</i>]isoquinolines. Angewandte Chemie - International Edition, 2011, 50, 7171-7175.	13.8	390
129	Enantioselective Intramolecular Crossed Rauhut–Currier Reactions through Cooperative Nucleophilic Activation and Hydrogenâ€Bonding Catalysis: Scope and Mechanistic Insight. Chemistry - A European Journal, 2011, 17, 6484-6491.	3.3	76
130	Tuning Electronic and Steric Effects: Highly Enantioselective [4+1] Pyrroline Annulation of Sulfur Ylides with α,βâ€Unsaturated Imines. Angewandte Chemie - International Edition, 2010, 49, 4495-4498.	13.8	95
131	Catalytic Asymmetric Intramolecular Hydroarylations of ï‰â€Aryloxy―and Arylaminoâ€Tethered α,βâ€Unsatura Aldehydes. Chemistry - A European Journal, 2009, 15, 2742-2746.	ated 3.3	66
132	Construction of Fused Heterocyclic Architectures by Formal [4+1]/[3+2] Cycloaddition Cascade of Sulfur Ylides and Nitroolefins. Angewandte Chemie - International Edition, 2009, 48, 9542-9545.	13.8	83
133	Highly chemo- and diastereoselective synthesis of substituted tetrahydropyran-4-ones via organocatalytic oxa-Diels–Alder reactions of acyclic α,β-unsaturated ketones with aldehydes. Tetrahedron Letters, 2008, 49, 1631-1635.	1.4	23
134	A New Entry to Cascade Organocatalysis: Reactions of Stable Sulfur Ylides and Nitroolefins Sequentially Catalyzed by Thiourea and DMAP. Journal of the American Chemical Society, 2008, 130, 6946-6948.	13.7	152
135	trans-4-(1-Naphthyl)-2-oxo-1,3-oxazolidine-5-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o1484-o1484.	0.2	0
136	Asymmetric Friedel–Crafts Alkylations of Indoles with Ethyl Glyoxylate Catalyzed by (<i>S</i>)â€BINOLâ€Titanium(IV) Complex: Direct Access to Enantiomerically Enriched 3â€Indolyl(hydroxy)acetates. Advanced Synthesis and Catalysis, 2007, 349, 1597-1603.	4.3	72
137	An Effective Bifunctional Thiourea Catalyst for Highly Enantio- and Diastereoselective Michael Addition of Cyclohexanone to Nitroolefins. Synthesis, 2006, 2006, 3795-3800.	2.3	9
138	Synthesis of Chiral Endocyclic Allenes by Palladium atalyzed Asymmetric Annulation Followed by Cope Rearrangement, Angewandte Chemie, 0, , ,	2.0	4