
Hong-Peng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Response surface analysis of energy balance and optimum condition for torrefaction of corn straw. Korean Journal of Chemical Engineering, 2022, 39, 1287-1298.	2.7	5
2	Research on the evolution characteristics of oxygen-containing functional groups during the combustion process of the torrefied corn stalk. Biomass and Bioenergy, 2022, 158, 106343.	5.7	10
3	Migration characteristics of heavy metals during co-combustion of dehydrated sludge with straw. Journal of Fuel Chemistry and Technology, 2022, 50, 283-294.	2.0	9
4	Pyrolysis Characteristics of Indonesian Oil Sand in a Fixed Bed. ACS Omega, 2022, 7, 23315-23321.	3.5	4
5	Combustion characteristics and typical pollutant emissions of corn stalk blending with municipal sewage sludge. Environmental Science and Pollution Research, 2021, 28, 9792-9805.	5.3	16
6	Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products. Korean Journal of Chemical Engineering, 2021, 38, 55-63.	2.7	16
7	Influence of air oxidative and non-oxidative torrefaction on the chemical properties of corn stalk. Bioresource Technology, 2021, 332, 125120.	9.6	49
8	Experimental study on influence of operating parameters on tar components from corn straw gasification in fluidized bed. Frontiers in Energy, 2021, 15, 374-383.	2.3	5
9	Density functional theory-based investigation of HCN and NH ₃ formation mechanisms during phenylalanine pyrolysis. RSC Advances, 2020, 10, 28431-28436.	3.6	13
10	Experimental Study on Product Gas and Tar Removal in Air–Steam Gasification of Corn Straw in a Bench-Scale Internally Circulating Fluidized Bed. Energy & Fuels, 2020, 34, 1908-1917.	5.1	11
11	Synergistic effects of coâ€combustion of sewage sludge and corn stalk and the resulting gas emission characteristics. IET Renewable Power Generation, 2020, 14, 1596-1605.	3.1	11
12	Quantitative study of the pyrolysis of levoglucosan to generate small molecular gases. RSC Advances, 2019, 9, 18791-18802.	3.6	12
13	Investigation of Behavior of Sulfur in Oil Fractions During Oil Shale Pyrolysis. Energy & Fuels, 2019, 33, 10622-10637.	5.1	22
14	Influence of Sewage Sludge on Ash Fusion during Combustion of Maize Straw. Energy & Fuels, 2019, 33, 10237-10246.	5.1	12
15	Mechanistic investigation of CO generation by pyrolysis of furan and its main derivatives. RSC Advances, 2019, 9, 9099-9105.	3.6	7
16	Effect of blending sewage sludge with coal on combustion and ash slagging behavior. RSC Advances, 2019, 9, 29482-29492.	3.6	17
17	Thermal behavior research for co-combustion of furfural residue and oil shale semi-coke. Applied Thermal Engineering, 2017, 120, 19-25.	6.0	50
18	Combustion characteristics of activated carbon particles. Journal of Thermal Analysis and Calorimetry. 2017. 130. 1191-1200.	3.6	8

HONG-PENG LIU

#	Article	IF	CITATIONS
19	TG-FTIR analysis of co-combustion characteristics of oil shale semi-coke and corn straw. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2531-2544.	3.6	16
20	Thermal behavior of co-combustion of oil shale semi-coke with torrefied cornstalk. Applied Thermal Engineering, 2016, 109, 413-422.	6.0	14
21	Synergy in co-combustion of oil shale semi-coke with torrefied cornstalk. Applied Thermal Engineering, 2016, 109, 653-662.	6.0	33
22	Study on Co-combustion Kinetics of Oil Shale Sludge and Semicoke. Energy & Fuels, 2016, 30, 2373-2384.	5.1	29
23	Co-combustion of Oil Shale Retorting Solid Waste with Cornstalk Particles in a Circulating Fluidized Bed. Energy & Fuels, 2015, 29, 6832-6838.	5.1	11
24	Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Applied Energy, 2011, 88, 2080-2087.	10.1	64
25	Numerical simulation of high-temperature corrosion and NOx generation characteristics of a boiler. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-22.	2.3	1
26	Study on Spontaneous Combustion Characteristics and Risk of Oil Shale. Combustion Science and Technology, 0, , 1-17.	2.3	3