
Narendra Chirmule

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8223386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAR-T cell therapy in India requires a paradigm shift in training, education and health care processes. Cytotherapy, 2022, 24, 101-109.	0.3	9
2	Advanced strategies in glycosylation prediction and control during biopharmaceutical development: Avenues toward industry 4.0. Biotechnology Progress, 2022, 38, .	1.3	0
3	Mentoring during the COVID-19 pandemic: a perspective from graduate students in biomedical science studies in India. Proceedings of the Indian National Science Academy, 2021, 87, 320-323.	0.5	3
4	Biopharmaceutical Development in India: Recommendations on Collaboration and Innovation to Enable Affordable Healthcare. , 2021, , 255-281.		3
5	Recommendations for Enhancing Quality and Capability of Indian Biopharmaceutical Industry: Summary of a Workshop. Journal of Pharmaceutical Sciences, 2020, 109, 2958-2961.	1.6	2
6	Failure Mode and Effects Analysis (FMEA) for Immunogenicity of Therapeutic Proteins. Journal of Pharmaceutical Sciences, 2020, 109, 3214-3222.	1.6	2
7	Development and validation of a cell based assay for the detection of neutralizing antibodies against recombinant insulins. Journal of Immunological Methods, 2018, 452, 53-62.	0.6	7
8	Immune Suppression During Preclinical Drug Development Mitigates Immunogenicity-Mediated Impact on Therapeutic Exposure. AAPS Journal, 2017, 19, 447-455.	2.2	5
9	Development and validation of an electrochemiluminescent ELISA for quantitation of oral insulin tregopil in diabetes mellitus serum. Bioanalysis, 2017, 9, 975-986.	0.6	4
10	Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. Journal of Immunology Research, 2016, 2016, 1-18.	0.9	154
11	Blockade of Interferonâ€Ĵ³ Normalizes Interferonâ€Regulated Gene Expression and Serum CXCL10 Levels in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2015, 67, 2713-2722.	2.9	60
12	Enhancing efficiency and quality of statistical estimation of immunogenicity assay cut points through standardization and automation. Journal of Immunological Methods, 2015, 425, 88-96.	0.6	1
13	Strategic characterization of anti-drug antibody responses for the assessment of clinical relevance and impact. Bioanalysis, 2014, 6, 1509-1523.	0.6	27
14	Stratification of Antibody-Positive Subjects by Antibody Level Reveals an Impact of Immunogenicity on Pharmacokinetics. AAPS Journal, 2013, 15, 30-40.	2.2	37
15	Immunogenicity testing strategy and bioanalytical assays for antibody–drug conjugates. Bioanalysis, 2013, 5, 1041-1055.	0.6	33
16	Measurement of Anti-Erythropoiesis-Stimulating Agent IgG4 Antibody as an Indicator of Antibody-Mediated Pure Red Cell Aplasia. Vaccine Journal, 2013, 20, 46-51.	3.2	15
17	Detection of anti-ESA antibodies in human samples from PRCA and non-PRCA patients: an immunoassay platform comparison. Nephrology Dialysis Transplantation, 2012, 27, 688-693.	0.4	22
18	Immunogenicity to Therapeutic Proteins: Impact on PK/PD and Efficacy. AAPS Journal, 2012, 14, 296-302.	2.2	262

NARENDRA CHIRMULE

#	Article	IF	CITATIONS
19	Comparing Exponentially Weighted Moving Average and Run Rules in Process Control of Semiquantitative Immunogenicity Immunoassays. AAPS Journal, 2010, 12, 79-86.	2.2	8
20	Assessment of immunogenicity of romiplostim in clinical studies with ITP subjects. Annals of Hematology, 2010, 89, 75-85.	0.8	28
21	Identification and inhibition of drug target interference in immunogenicity assays. Journal of Immunological Methods, 2010, 355, 21-28.	0.6	57
22	Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clinical Immunology, 2010, 137, 5-14.	1.4	73
23	Impact of matrix-associated soluble factors on the specificity of the immunogenicity assessment. Bioanalysis, 2010, 2, 721-731.	0.6	16
24	Assessing specificity for immunogenicity assays. Bioanalysis, 2009, 1, 611-617.	0.6	15
25	A Step-wise Approach for Transfer of Immunogenicity Assays during Clinical Drug Development. AAPS Journal, 2009, 11, 526-34.	2.2	6
26	Elimination of rheumatoid factor interference in immunoassays using the electrochemiluminescence (ECL) based Meso Scale Discovery (MSD) platform. FASEB Journal, 2008, 22, 566-566.	0.2	2
27	Correlation of in silico prediction of immunogenicity of therapeutic proteins with immune responses in clinical studies FASEB Journal, 2008, 22, 563-563.	0.2	Ο
28	Enhanced Rates and Magnitude of Immune Responses Detected against an HIV Vaccine: Effect of Using an Optimized Process for Isolating PBMC. AIDS Research and Human Retroviruses, 2007, 23, 86-92.	0.5	71
29	A novel chemistry for conjugating pneumococcal polysaccharides to Luminex microspheres. Journal of Immunological Methods, 2006, 309, 75-85.	0.6	70
30	The optimization and validation of the glycoprotein ELISA assay for quantitative varicella-zoster virus (VZV) antibody detection. Journal of Medical Virology, 2006, 78, 1679-1687.	2.5	48
31	Enzyme-Linked Immunosorbent Assay for Measuring Antibodies to Pneumococcal Polysaccharides for the PNEUMOVAX 23 Vaccine: Assay Operating Characteristics and Correlation to the WHO International Assay. Vaccine Journal, 2006, 13, 905-912.	3.2	29
32	Innate Immune Responses to Adenoviral Vector-Mediated Acute Pancreatitis. Pancreas, 2005, 30, 122-129.	0.5	22
33	Optimization and Validation of a Multiplexed Luminex Assay To Quantify Antibodies to Neutralizing Epitopes on Human Papillomaviruses 6, 11, 16, and 18. Vaccine Journal, 2005, 12, 959-969.	3.2	222
34	Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molecular Genetics and Metabolism, 2003, 80, 148-158.	0.5	1,309
35	Simultaneous Quantitation of Antibodies to Neutralizing Epitopes on Virus-Like Particles for Human Papillomavirus Types 6, 11, 16, and 18 by a Multiplexed Luminex Assay. Vaccine Journal, 2003, 10, 108-115.	3.2	245
36	Development of an Adenovirus-Shedding Assay for the Detection of Adenoviral Vector-Based Vaccine and Gene Therapy Products in Clinical Specimens. Human Gene Therapy, 2003, 14, 25-36.	1.4	12

NARENDRA CHIRMULE

#	Article	IF	CITATIONS
37	A Pilot Study ofIn VivoLiver-Directed Gene Transfer with an Adenoviral Vector in Partial Ornithine Transcarbamylase Deficiency. Human Gene Therapy, 2002, 13, 163-175.	1.4	337
38	PEGylation of E1-Deleted Adenovirus Vectors Allows Significant Gene Expression on Readministration to Liver. Human Gene Therapy, 2002, 13, 1887-1900.	1.4	166
39	"Stealth―Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung. Journal of Virology, 2001, 75, 4792-4801.	1.5	221
40	Biology of E1-Deleted Adenovirus Vectors in Nonhuman Primate Muscle. Journal of Virology, 2001, 75, 5222-5229.	1.5	32
41	Hybrid Vectors Based on Adeno-Associated Virus Serotypes 2 and 5 for Muscle-Directed Gene Transfer. Journal of Virology, 2001, 75, 6199-6203.	1.5	203
42	Acute Cytokine Response to Systemic Adenoviral Vectors in Mice Is Mediated by Dendritic Cells and Macrophages. Molecular Therapy, 2001, 3, 697-707.	3.7	367
43	Muscle-Specific Promoters May Be Necessary for Adeno-Associated Virus-Mediated Gene Transfer in the Treatment of Muscular Dystrophies. Human Gene Therapy, 2001, 12, 205-215.	1.4	138
44	CD40 Ligand-Dependent Activation of Cytotoxic T Lymphocytes by Adeno-Associated Virus Vectors In Vivo: Role of Immature Dendritic Cells. Journal of Virology, 2000, 74, 8003-8010.	1.5	110
45	Th2-Dependent B Cell Responses in the Absence of CD40-CD40 Ligand Interactions. Journal of Immunology, 2000, 164, 248-255.	0.4	18
46	Additional Transduction Events after Subretinal Readministration of Recombinant Adeno-Associated Virus. Human Gene Therapy, 2000, 11, 449-457.	1.4	51
47	Route of Administration Determines Induction of T-Cell-Independent Humoral Responses to Adeno-Associated Virus Vectors. Molecular Therapy, 2000, 1, 323-329.	3.7	108
48	Partial Correction of Murine Hemophilia A with Neo-Antigenic Murine Factor VIII. Human Gene Therapy, 2000, 11, 881-894.	1.4	56
49	Purification of Recombinant Adeno-Associated Virus Vectors by Column Chromatography and Its Performancein Vivo. Human Gene Therapy, 2000, 11, 2079-2091.	1.4	176
50	Readministration of Adenovirus Vector in Nonhuman Primate Lungs by Blockade of CD40-CD40 Ligand Interactions. Journal of Virology, 2000, 74, 3345-3352.	1.5	59
51	Humoral Immunity to Adeno-Associated Virus Type 2 Vectors following Administration to Murine and Nonhuman Primate Muscle. Journal of Virology, 2000, 74, 2420-2425.	1.5	174
52	Fas-Fas Ligand Interactions Play a Major Role in Effector Functions of Cytotoxic T Lymphocytes after Adenovirus Vector-Mediated Gene Transfer. Human Gene Therapy, 1999, 10, 259-269.	1.4	34
53	A Phase I Study of Adenovirus-Mediated Transfer of the Human Cystic Fibrosis Transmembrane Conductance Regulator Gene to a Lung Segment of Individuals with Cystic Fibrosis. Human Gene Therapy, 1999, 10, 2973-2985.	1.4	138
54	Adenoviral Vector-Mediated Gene Therapy in the Mouse Lung: No Role of Fas-Fas Ligand Interactions for Elimination of Transgene Expression in Bronchioepithelial Cells. Human Gene Therapy, 1999, 10, 2839-2846.	1.4	9

NARENDRA CHIRMULE

#	Article	IF	CITATIONS
55	Gene Therapy Vectors Based on Adeno-Associated Virus Type 1. Journal of Virology, 1999, 73, 3994-4003.	1.5	484
56	Role of E4 in Eliciting CD4 T-Cell and B-Cell Responses to Adenovirus Vectors Delivered to Murine and Nonhuman Primate Lungs. Journal of Virology, 1998, 72, 6138-6145.	1.5	70
57	Characterization of the Immune Response After Local Delivery of Recombinant Adenovirus in Murine Pancreas and Successful Strategies for Readministration. Human Gene Therapy, 1997, 8, 2207-2216.	1.4	42
58	Immune Hyperactivation of HIV-1-Infected T Cells Mediated by Tat and the CD28 Pathway. Science, 1997, 275, 1481-1485.	6.0	223
59	Signals Transduced through the CD4 Molecule Interfere with TCR/CD3-Mediated Ras Activation Leading to T Cell Anergy/Apoptosis. Clinical Immunology and Immunopathology, 1997, 85, 195-201.	2.1	24
60	The HIV Glycoprotein gp160 Has Superantigen-like Properties. Clinical Immunology and Immunopathology, 1995, 76, 255-265.	2.1	11
61	HIV-1 Envelope Glycoproteins Induce Activation of Activated Protein-1 in CD4+ T Cells. Journal of Biological Chemistry, 1995, 270, 19364-19369.	1.6	51
62	Immunological Characteristics of HIV-Infected Children: Relationship to Age, CD4 Counts, Disease Progression, and Survival. AIDS Research and Human Retroviruses, 1995, 11, 1209-1219.	0.5	12
63	Improved Specificity ofIn VitroAnti-HIV Antibody Production: Implications for Diagnosis and Timing of Transmission in Infants Born to HIV-Seropositive Mothers. AIDS Research and Human Retroviruses, 1994, 10, 691-699.	0.5	22
64	Envelope Glycoproteins of HIV-1 Interfere with T-Cell-Dependent B Cell Differentiation: Role of CD4-MHC Class II Interaction in the Effector Phase of T Cell Help. Cellular Immunology, 1994, 155, 169-182.	1.4	11
65	Misinterpretation of results of cytokine bioassays. Journal of Immunological Methods, 1991, 137, 141-144.	0.6	25