Nathan Lo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222958/publications.pdf

Version: 2024-02-01

		36299	56717
149	8,148	51	83
papers	citations	h-index	g-index
158	158	158	7352
130	130	130	7332
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 2000, 10, 801-804.	3.9	369
2	A cellulase gene of termite origin. Nature, 1998, 394, 330-331.	27.8	333
3	Polyphenism in Insects. Current Biology, 2011, 21, R738-R749.	3.9	320
4	The Evolutionary History of Termites as Inferred from 66 Mitochondrial Genomes. Molecular Biology and Evolution, 2015, 32, 406-421.	8.9	268
5	How Many Wolbachia Supergroups Exist?. Molecular Biology and Evolution, 2002, 19, 341-346.	8.9	254
6	Nature versus nurture in social insect caste differentiation. Trends in Ecology and Evolution, 2010, 25, 275-282.	8.7	241
7	Phylogeny of Wolbachia pipientis based on gltA, groEL and ftsZ gene sequences: clustering of arthropod and nematode symbionts in the F supergroup, and evidence for further diversity in the Wolbachia tree. Microbiology (United Kingdom), 2005, 151, 4015-4022.	1.8	216
8	Candidatus Midichloria mitochondrii', an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2535-2540.	1.7	185
9	Ants and termites increase crop yield in a dry climate. Nature Communications, 2011, 2, 262.	12.8	178
10	Mosaic Nature of the Wolbachia Surface Protein. Journal of Bacteriology, 2005, 187, 5406-5418.	2.2	176
11	Evidence for Cocladogenesis Between Diverse Dictyopteran Lineages and Their Intracellular Endosymbionts. Molecular Biology and Evolution, 2003, 20, 907-913.	8.9	17 3
12	Taxonomic status of the intracellular bacterium Wolbachia pipientis. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 654-657.	1.7	157
13	New Insights into the Evolution of Wolbachia Infections in Filarial Nematodes Inferred from a Large Range of Screened Species. PLoS ONE, 2011, 6, e20843.	2.5	153
14	Widespread convergence in toxin resistance by predictable molecular evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11911-11916.	7.1	130
15	A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): Robust support for interfamilial relationships and molecular synapomorphies define major clades. Molecular Phylogenetics and Evolution, 2012, 65, 163-173.	2.7	127
16	Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1447, 146-159.	2.4	124
17	Phylogenomic Evidence for the Presence of a Flagellum and cbb3 Oxidase in the Free-Living Mitochondrial Ancestor. Molecular Biology and Evolution, 2011, 28, 3285-3296.	8.9	124
18	Extensive Diversity of RNA Viruses in Australian Ticks. Journal of Virology, 2019, 93, .	3.4	116

#	Article	IF	CITATIONS
19	Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Current Biology, 2019, 29, 3728-3734.e4.	3.9	110
20	<i>Midichloria mitochondrii</i> is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology, 2008, 135, 485-494.	1.5	106
21	A molecular phylogeny of the genus <i>Apis</i> suggests that the Giant Honey Bee of the Philippines, <i>A. breviligula</i> Maa, and the Plains Honey Bee of southern India, <i>A. indica</i> Fabricius, are valid species. Systematic Entomology, 2010, 35, 226-233.	3.9	106
22	Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. FEBS Journal, 2003, 270, 3455-3460.	0.2	102
23	Rampant Host Switching Shaped the Termite Gut Microbiome. Current Biology, 2018, 28, 649-654.e2.	3.9	101
24	Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology, 2004, 13, 3219-3228.	3.9	100
25	"Candidatus Midichloriaceae―fam. nov. (Rickettsiales), an Ecologically Widespread Clade of Intracellular Alphaproteobacteria. Applied and Environmental Microbiology, 2013, 79, 3241-3248.	3.1	99
26	Inhibition of the endosymbiont "Candidatus Midichloria mitochondrii―during 16S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites and Vectors, 2015, 8, 345.	2.5	95
27	Phylogenetic evidence for a single, ancestral origin of a 'true' worker caste in termites. Journal of Evolutionary Biology, 2000, 13, 869-881.	1.7	93
28	A symbiont of the tick Ixodes ricinus invades and consumes mitochondria in a mode similar to that of the parasitic bacterium Bdellovibrio bacteriovorus. Tissue and Cell, 2004, 36, 43-53.	2.2	93
29	Biogeographic calibrations for the molecular clock. Biology Letters, 2015, 11, 20150194.	2.3	93
30	Widespread distribution and high prevalence of an alpha-proteobacterial symbiont in the tick Ixodes ricinus. Environmental Microbiology, 2006, 8, 1280-1287.	3.8	91
31	Mitochondrial Phylogenomics Resolves the Global Spread of Higher Termites, Ecosystem Engineers of the Tropics. Molecular Biology and Evolution, 2017, 34, msw253.	8.9	89
32	Sex-Linked Genetic Influence on Caste Determination in a Termite. Science, 2007, 318, 985-987.	12.6	87
33	Parasitism and Mutualism in Wolbachia: What the Phylogenomic Trees Can and Cannot Say. Molecular Biology and Evolution, 2008, 26, 231-241.	8.9	86
34	A Novel Alpha-Proteobacterium Resides in the Mitochondria of Ovarian Cells of the Tick Ixodes ricinus. Applied and Environmental Microbiology, 2004, 70, 2596-2602.	3.1	85
35	The Impact of the Tree Prior on Molecular Dating of Data Sets Containing a Mixture of Inter- and Intraspecies Sampling. Systematic Biology, 2017, 66, syw095.	5.6	80
36	Molecular phylogeny of the Rhinotermitidae. Insectes Sociaux, 2004, 51, 365-371.	1.2	73

#	Article	IF	CITATIONS
37	Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites <i>Reticulitermes</i> Seciety B: Biological Sciences, 2016, 283, 20160179.	2.6	73
38	Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Molecular Biology and Evolution, 2018, 35, 970-983.	8.9	73
39	Genome Shrinkage and Loss of Nutrient-Providing Potential in the Obligate Symbiont of the Primitive Termite Mastotermes darwiniensis. Applied and Environmental Microbiology, 2012, 78, 204-210.	3.1	72
40	Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, S69-72.	2.6	71
41	Comment on "Phylogenomics resolves the timing and pattern of insect evolution― Science, 2015, 349, 487-487.	12.6	69
42	Wood-feeding cockroaches as models for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleiriana. Molecular Phylogenetics and Evolution, 2008, 46, 809-817.	2.7	68
43	First Detection of Spotted Fever Group Rickettsiae in <i>lxodes ricinus</i> from Italy. Emerging Infectious Diseases, 2002, 8, 983-986.	4.3	68
44	" <i>Candidatus</i> Midichloria―Endosymbionts Bloom after the Blood Meal of the Host, the Hard Tick <i>Ixodes ricinus</i> . Applied and Environmental Microbiology, 2008, 74, 6138-6140.	3.1	67
45	Save Isoptera: A comment on Inward <i>et al</i> Biology Letters, 2007, 3, 562-563.	2.3	65
46	Revisiting <i>Coptotermes</i> (Isoptera: Rhinotermitidae): a global taxonomic road map for species validity and distribution of an economically important subterranean termite genus. Systematic Entomology, 2016, 41, 299-306.	3.9	65
47	Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasites and Vectors, 2016, 9, 339.	2.5	63
48	Novel hepatitis D-like agents in vertebrates and invertebrates. Virus Evolution, 2019, 5, vez021.	4.9	63
49	Cockroaches that lack Blattabacterium endosymbionts: the phylogenetically divergent genus Nocticola. Biology Letters, 2007, 3, 327-330.	2.3	60
50	Metabolomic profiling of ¹³ C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140990.	2.6	58
51	Genome analyses of uncultured TG2/ZB3 bacteria in $\hat{a} \in \mathbb{N}$ Margulisbacteria $\hat{a} \in \mathbb{N}$ specifically attached to ectosymbiotic spirochetes of protists in the termite gut. ISME Journal, 2019, 13, 455-467.	9.8	55
52	Molecular Phylogeny and Geographic Distribution of Wood-Feeding Cockroaches in East Asian Islands. Molecular Phylogenetics and Evolution, 1999, 13, 360-376.	2.7	54
53	Evidence for Permo-Triassic colonization of the deep sea by isopods. Biology Letters, 2012, 8, 979-982.	2.3	54
54	Reconstructing the phylogeny of Blattodea: robust support for interfamilial relationships and major clades. Scientific Reports, 2017, 7, 3903.	3.3	50

#	Article	IF	CITATIONS
55	Permanent Genetic Resources added to Molecular Ecology Resources Database 1 June 2010 – 31 July 2010. Molecular Ecology Resources, 2010, 10, 1106-1108.	4.8	48
56	The Impact of Modelling Rate Heterogeneity among Sites on Phylogenetic Estimates of Intraspecific Evolutionary Rates and Timescales. PLoS ONE, 2014, 9, e95722.	2.5	48
57	The insect molecular clock. Australian Journal of Entomology, 2013, 52, 101-105.	1.1	45
58	Maintenance of essential amino acid synthesis pathways in the <i>Blattabacterium cuenoti</i> symbiont of a wood-feeding cockroach. Biology Letters, 2013, 9, 20121153.	2.3	45
59	Increased Mutation Rate Is Linked to Genome Reduction in Prokaryotes. Current Biology, 2020, 30, 3848-3855.e4.	3.9	44
60	Kin conflict in insect societies: a new epigenetic perspective. Trends in Ecology and Evolution, 2012, 27, 367-373.	8.7	43
61	An evolutionary timescale for terrestrial isopods and a lack of molecular support for the monophyly of Oniscidea (Crustacea: Isopoda). Organisms Diversity and Evolution, 2017, 17, 813-820.	1.6	43
62	Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochemistry and Molecular Biology, 1997, 27, 291-303.	2.7	35
63	Museum specimens provide reliable SNP data for population genomic analysis of a widely distributed but threatened cockatoo species. Molecular Ecology Resources, 2019, 19, 1578-1592.	4.8	35
64	The functional evolution of termite gut microbiota. Microbiome, 2022, 10, .	11.1	35
65	Marked variations in patterns of cellulase activity against crystalline-vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiological Entomology, 2005, 30, 050930084535006-???.	1.5	34
66	Phylogenetic diversity of the intracellular symbiont Wolbachia in termites. Molecular Phylogenetics and Evolution, 2007, 44, 461-466.	2.7	34
67	Evidence for Widespread Genomic Methylation in the Migratory Locust, Locusta migratoria (Orthoptera: Acrididae). PLoS ONE, 2011, 6, e28167.	2.5	34
68	Cellulolytic Protist Numbers Rise and Fall Dramatically in Termite Queens and Kings during Colony Foundation. Eukaryotic Cell, 2013, 12, 545-550.	3.4	34
69	The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1301-1307.	2.6	33
70	Rickettsiae in Ixodid Ticks, Sicily. Emerging Infectious Diseases, 2005, 11, 509-511.	4.3	33
71	Phylogenetic Diversity and Single-Cell Genome Analysis of " <i>Melainabacteria</i> â€; a Non-Photosynthetic Cyanobacterial Group, in the Termite Gut. Microbes and Environments, 2018, 33, 50-57.	1.6	33
72	On the respiratory quotient (RQ) of termites (Insecta: Isoptera). Journal of Insect Physiology, 1997, 43, 749-758.	2.0	31

#	Article	IF	Citations
73	Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases?. Gene, 2007, 401, 131-134.	2.2	31
74	The evolutionary history of Stomatopoda (Crustacea: Malacostraca) inferred from molecular data. Peerl, 2017, 5, e3844.	2.0	29
75	Phylogeny of endosymbiont bacteria harbored by the woodroach Cryptocercus spp. (Cryptocercidae:) Tj ETQq1 lineages. Molecular Phylogenetics and Evolution, 2005, 36, 728-733.	1 0.7843	14 rgBT /Over 28
76	Absence of the symbiont <i>Candidatus</i> Midichloria mitochondrii in the mitochondria of the tick <i>Ixodes holocyclus</i> FEMS Microbiology Letters, 2009, 299, 241-247.	1.8	28
77	Unmapped RNA Virus Diversity in Termites and Their Symbionts. Viruses, 2020, 12, 1145.	3.3	28
78	Comparison of Intracellular " <i>Ca.</i> Endomicrobium Trichonymphae―Genomovars Illuminates the Requirement and Decay of Defense Systems against Foreign DNA. Genome Biology and Evolution, 2016, 8, 3099-3107.	2.5	27
79	On the origin of termite workers: weighing up the phylogenetic evidence. Journal of Evolutionary Biology, 2003, 17, 217-220.	1.7	26
80	Should Environmental Caste Determination Be Assumed for Termites?. American Naturalist, 2009, 173, 848-853.	2.1	26
81	Epigenetics and developmental plasticity in orthopteroid insects. Current Opinion in Insect Science, 2018, 25, 25-34.	4.4	26
82	The origins and radiation of Australian Coptotermes termites: From rainforest to desert dwellers. Molecular Phylogenetics and Evolution, 2015, 82, 234-244.	2.7	25
83	Species Delimitation and Phylogenetic Relationships in Ectobiid Cockroaches (Dictyoptera, Blattodea) from China. PLoS ONE, 2017, 12, e0169006.	2.5	25
84	Recalibration of the insect evolutionary time scale using Monte San Giorgio fossils suggests survival of key lineages through the End-Permian Extinction. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191854.	2.6	24
85	Alternative migratory locust phenotypes are associated with differences in the expression of genes encoding the methylation machinery. Insect Molecular Biology, 2016, 25, 105-115.	2.0	22
86	A global molecular phylogeny and timescale of evolution for Cryptocercus woodroaches. Molecular Phylogenetics and Evolution, 2016, 98, 201-209.	2.7	22
87	Evidence for genetically influenced caste determination in phylogenetically diverse species of the termite genus <i>Reticulitermes</i> Io 1. Biology Letters 2011 7 257-260	2.3	21
88	Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics, 2013, 65, 25-35.	2.4	21
89	Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Molecular Phylogenetics and Evolution, 2019, 132, 100-104.	2.7	21
90	DNA methylation in the termite Coptotermes lacteus. Insectes Sociaux, 2012, 59, 257-261.	1.2	20

#	Article	IF	Citations
91	Parallel evolution of mound-building and grass-feeding in Australian nasute termites. Biology Letters, 2017, 13, 20160665.	2.3	20
92	Evolution and Function of Endogenous Termite Cellulases. , 2010, , 51-67.		19
93	Angels in disguise: sympatric hybridization in the marine angelfishes is widespread and occurs between deeply divergent lineages. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201459.	2.6	18
94	Discovery of ectosymbiotic <i>Endomicrobium</i> lineages associated with protists in the gut of stolotermitid termites. Environmental Microbiology Reports, 2017, 9, 411-418.	2.4	17
95	Boomeranging around Australia: Historical biogeography and population genomics of the antiâ€equatorial fish Microcanthus strigatus (Teleostei: Microcanthidae). Molecular Ecology, 2019, 28, 3771-3785.	3.9	17
96	Evolutionary rates are correlated between cockroach symbionts and mitochondrial genomes. Biology Letters, 2020, 16, 20190702.	2.3	17
97	Exploring the diversity of Asian Cryptocercus (Blattodea: Cryptocercidae): species delimitation based on chromosome numbers, morphology and molecular analysis. Invertebrate Systematics, 2018, 32, 69.	1.3	16
98	Two speed invasion: assisted and intrinsic dispersal of common mynas over 150 years of colonization. Journal of Biogeography, 2019, 46, 45-57.	3.0	16
99	Molecular Phylogeny of Cryptocercus Wood-roaches Based on Mitochondrial COII and 16S Sequences, and Chromosome Numbers in Palearctic Representatives. Zoological Science, 2006, 23, 393-398.	0.7	15
100	Purifying selection and concerted evolution of RNA-sensing toll-like receptors in migratory waders. Infection, Genetics and Evolution, 2017, 53, 135-145.	2.3	15
101	A significant fitness cost associated with ACE1 target site pirimicarb resistance in a field isolate of Aphis gossypii Glover from Australian cotton. Journal of Pest Science, 2017, 90, 773-779.	3.7	15
102	Multiple evolutionary origins of Australian soil-burrowing cockroaches driven by climate change in the Neogene. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152869.	2.6	14
103	Parallel and Gradual Genome Erosion in the Blattabacterium Endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biology and Evolution, 2018, 10, 1622-1630.	2.5	14
104	Symbiotic "Archaezoa―of the Primitive Termite Mastotermes darwiniensis Still Play a Role in Cellulase Production. Eukaryotic Cell, 2006, 5, 1571-1576.	3.4	13
105	Termite Phylogenetics and Co-cladogenesis with Symbionts. , 2010, , 27-50.		13
106	Loss of males from mixed-sex societies in termites. BMC Biology, 2018, 16, 96.	3.8	13
107	Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect―are associated with Gene Loss in ⟨i⟩Blattabacterium⟨/i⟩, A Cockroach Endosymbiont. Molecular Biology and Evolution, 2021, 38, 3820-3831.	8.9	13
108	Phylogenetic Analyses of Fat Body Endosymbionts Reveal Differences in Invasion Times of Blaberid Wood-feeding Cockroaches (Blaberidae: Panesthiinae) into the Japanese Archipelago. Zoological Science, 2005, 22, 1061-1067.	0.7	12

#	Article	IF	CITATIONS
109	Presoldier differentiation of Australian termite species induced by juvenile hormone analogues. Austral Entomology, 2014, 53, 138-143.	1.4	12
110	The Genome as an Evolutionary Timepiece. Genome Biology and Evolution, 2016, 8, 3006-3010.	2.5	12
111	Examining the sensitivity of molecular species delimitations to the choice of mitochondrial marker. Organisms Diversity and Evolution, 2016, 16, 467-480.	1.6	12
112	Ecological diversification of the Australian <i>Coptotermes</i> building. Journal of Biogeography, 2017, 44, 1405-1417.	3.0	12
113	Phylogenomic Analysis of Concatenated Ultraconserved Elements Reveals the Recent Evolutionary Radiation of the Fairy Wrasses (Teleostei: Labridae: <i>Cirrhilabrus</i>). Systematic Biology, 2021, 71, 1-12.	5.6	12
114	Construction and Characterization of Normalized cDNA Libraries by 454 Pyrosequencing and Estimation of DNA Methylation Levels in Three Distantly Related Termite Species. PLoS ONE, 2013, 8, e76678.	2.5	12
115	Population genetics of the Australian eucalypt pest Thaumastocoris peregrinus: evidence for a recent invasion of Sydney. Journal of Pest Science, 2019, 92, 201-212.	3.7	11
116	Termites host specific fungal communities that differ from those in their ambient environments. Fungal Ecology, 2020, 48, 100991.	1.6	11
117	Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). Systematic Entomology, 2022, 47, 581-590.	3.9	11
118	Termites Are Associated with External Species-Specific Bacterial Communities. Applied and Environmental Microbiology, 2021, 87, .	3.1	10
119	Phylogeography and diversity of the terrestrial isopodSpherillo grossus(Oniscidea: Armadillidae) on the Australian East Coast. Zoological Journal of the Linnean Society, 2014, 170, 297-309.	2.3	9
120	Digging deep: a revised phylogeny of Australian burrowing cockroaches (Blaberidae: Panesthiinae,) Tj ETQq0 0 0 evolution of burrowing. Systematic Entomology, 2021, 46, 767-783.	rgBT /Ovei 3.9	lock 10 Tf 50
121	Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences. Bulletin of Entomological Research, 2006, 96, 433-7.	1.0	9
122	Phylogeography of the iconic Australian red-tailed black-cockatoo (Calyptorhynchus banksii) and implications for its conservation. Heredity, 2020, 125, 85-100.	2.6	8
123	Purification and partial genome characterization of the bacterial endosymbiont Blattabacterium cuenoti from the fat bodies of cockroaches. BMC Research Notes, 2008, 1, 118.	1.4	7
124	Multiple abiotic factors correlate with parallel evolution in Australian soil burrowing cockroaches. Journal of Biogeography, 2018, 45, 1515-1528.	3.0	7
125	Termite sociogenomics: evolution and regulation of caste-specific expressed genes. Current Opinion in Insect Science, 2022, 50, 100880.	4.4	7
126	Comparative screening of endosymbiotic bacteria associated with the asexual and sexual lineages of the termite <i>Glyptotermes nakajimai</i> . Communicative and Integrative Biology, 2019, 12, 55-58.	1.4	6

#	Article	IF	Citations
127	The impacts of drift and selection on genomic evolution in insects. PeerJ, 2017, 5, e3241.	2.0	6
128	A rapid multiplex PCR assay for presumptive species identification of rhinoceros horns and its implementation in Vietnam. PLoS ONE, 2018, 13, e0198565.	2.5	5
129	Novel Lineages of Oxymonad Flagellates from the Termite Porotermes adamsoni (Stolotermitidae): the Genera Oxynympha and Termitimonas. Protist, 2019, 170, 125683.	1.5	5
130	Combining morphological and molecular data resolves the phylogeny of Squilloidea (Crustacea :) Tj ETQq0 0 0 0	rgBT /Over 1:3	lock 10 Tf 50
131	Evolutionary Rates are Correlated Between Buchnera Endosymbionts andÂthe Mitochondrial Genomes of Their Aphid Hosts. Journal of Molecular Evolution, 2021, 89, 238-248.	1.8	5
132	Enhanced heterozygosity from male meiotic chromosome chains is superseded by hybrid female asexuality in termites. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
133	Polyphenism in Insects. Current Biology, 2012, 22, 352.	3.9	4
134	Evidence for a complex evolutionary history of mound building in the Australian nasute termites (Nasutitermitinae). Biological Journal of the Linnean Society, 2019, 126, 304-314.	1.6	4
135	Vicariance and dispersal events inferred from mitochondrial genomes and nuclear genes (18S, 28S) shaped global Cryptocercus distributions. Molecular Phylogenetics and Evolution, 2022, 166, 107318.	2.7	4
136	Neotenic reproductives influence worker caste differentiation in the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). Sociobiology, 2014, 60, .	0.5	4
137	A review of the status of Coptotermes (Isoptera: Rhinotermitidae) species in Australia with the description of two new small termite species from northern and eastern Australia. Invertebrate Systematics, 2017, 31, 180.	1.3	3
138	Global incursion pathways of Thaumastocoris peregrinus, an invasive Australian pest of eucalypts. Biological Invasions, 2020, 22, 3501-3518.	2.4	3
139	Phylogeography of the iconic Australian pink cockatoo, <i>Lophochroa leadbeateri</i> Journal of the Linnean Society, 2021, 132, 704-723.	1.6	3
140	Female-only workers and soldiers in Schedorhinotermes intermedius are not produced by parthenogenesis. Insectes Sociaux, 2017, 64, 133-139.	1.2	2
141	High numbers of unrelated reproductives in the Australian †higher' termite Nasutitermes exitiosus (Blattodea: Termitidae). Insectes Sociaux, 2020, 67, 281-294.	1.2	1
142	â€~Candidatus Midichloria mitochondrii', formerly IricES1, a symbiont of the tick Ixodes ricinus that resides in the host mitochondria. , 2010, , 527-531.		1
143	A microsatellite-based test of the Reticulitermes speratus genetic caste determination model in Coptotermes lacteus. Insectes Sociaux, 2011, 58, 365-370.	1.2	0
144	Caste in Social Insects: Genetic Influences Over Caste Determination. , 2019, , 274-281.		0

#	Article	IF	CITATIONS
145	Mastotermes darwiniensis., 2021,, 576-578.		0
146	Termites: Phylogeny and Classification. , 2021, , 963-968.		0
147	Molecular systematics and biogeography of an Australian soilâ€burrowing cockroach with polymorphic males, Geoscapheus dilatatus (Blattodea: Blaberidae). Austral Entomology, 2021, 60, 317-329.	1.4	0
148	Termites: Phylogeny and Classification. , 2020, , 1-6.		0
149	Mastotermes darwiniensis. , 2020, , 1-4.		0