Jatiǹder Vir Yakhmi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222819/publications.pdf

Version: 2024-02-01

329 papers 7,653 citations

66250 44 h-index 76 g-index

334 all docs

334 docs citations

times ranked

334

9317 citing authors

#	Article	IF	CITATIONS
1	Nanomaterials as Enhanced Antimicrobial Agent/Activity-Enhancer for Transdermal Applications: A Review., 2017,, 279-321.		9
2	Interfacial engineering of nanoparticles for cancer therapeutics. , 2017, , 177-209.		16
3	Nanotechnological approaches toward cancer chemotherapy. , 2017, , 211-240.		6
4	Microbial fuel cells $\hat{a}\in$ Applications for generation of electrical power and beyond. Critical Reviews in Microbiology, 2016, 42, 127-143.	2.7	78
5	Nanobiomaterials as gene-delivery vehicles. , 2016, , 447-486.		4
6	Structural behaviour of niobium oxynitride under high pressure. , 2014, , .		0
7	Probing the superconducting properties of the Si-doped Nb-oxynitride superconductor(Nb0.87Si0.09â—¡0.04)(N0.87O0.13). Physical Review B, 2014, 90, .	1.1	4
8	Local structure around the flux pinning centers in superconducting niobium silicon oxynitride (Nb0.87Si0.09â-j0.04)(N0.87O0.13). Journal of Solid State Chemistry, 2014, 210, 238-241.	1.4	9
9	Microbial fuel cells to recover heavy metals. Environmental Chemistry Letters, 2014, 12, 483-494.	8.3	124
10	Hierarchical Self-Assembled Peptide Nano-ensembles. , 2014, , 247-284.		0
11	Structural behaviour of Mg, Al and Si doped niobium oxynitrides under high pressures. , 2013, , .		O
12	Spin interactions in mineral libethenite series: evolution of low-dimensional magnetism. Journal of Physics Condensed Matter, 2012, 24, 436003.	0.7	1
13	Electronic Structure of Mineral Libethenite Series: A Minimal Model Approach. Solid State Phenomena, 2012, 194, 284-287.	0.3	O
14	Slow Magnetic Relaxations in Manganese(III) Tetra(meta-fluorophenyl)porphyrin-tetracyanoethenide. Comparison with the Relative Single Chain Magnet ortho Compound. Inorganic Chemistry, 2012, 51, 9983-9994.	1.9	34
15	Conducting Polymer Sensors, Actuators and Field-Effect Transistors. , 2012, , 61-110.		14
16	Functional Superconducting Materials. , 2012, , 261-284.		3
17	Ultra low field emission characteristics of chloride doped polypyrrole films. Polymers for Advanced Technologies, 2012, 23, 215-219.	1.6	8
18	Superconductivity in quaternary niobium oxynitrides containing main group elements (M=Mg, Al, Si). Journal of Solid State Chemistry, 2012, 188, 66-71.	1.4	11

#	Article	IF	Citations
19	Charge transport in ultrathin iron-phthalocyanine thin films under high electric fields. Journal of Physics Condensed Matter, 2011, 23, 355801.	0.7	1
20	Conformational morphology of polyaniline grown on self-assembled monolayer modified silicon. Thin Solid Films, 2011, 520, 351-355.	0.8	4
21	Influence of sulphur atom on the qualitative behavior of electron impact total cross sections of some sulphur containing molecules. Indian Journal of Physics, 2011, 85, 1717-1720.	0.9	12
22	Temperature dependent H2S and Cl2 sensing selectivity of Cr2O3 thin films. Sensors and Actuators B: Chemical, 2011, 157, 466-472.	4.0	53
23	Improved charge conduction in cobalt-phthalocyanine thin films grown along $36.8 {\hat A}^\circ$ boundary of SrTiO3 bicrystals. Applied Physics Letters, $2011,98,.$	1.5	9
24	Nature of Magnetic Ordering in Molecular Magnet Mn[Fe(CN)[sub 6]][sub 2â^•3]â‹zH[sub 2]O., 2011,,.		0
25	Characterization and Mol`ssbauer Study of Ni[sub 0.45]Zn[sub 0.55]Fe[sub 2]O[sub 4] Nanoparticles Prepared by Novel Precursor Method., 2011,,.		0
26	EFFECT OF GATE INSULATOR ON THE PERFORMANCE OF COPPER PHTHALOCYANINE-BASED ORGANIC THIN FILM TRANSISTORS. International Journal of Nanoscience, 2011, 10, 745-748.	0.4	1
27	Thickness Dependent Magnetic Properties of Thin Films of Prussian Blue Analogue Fe[sub 1.5][Cr(CN)[sub 6]]â7.5H[sub 2]O. , 2011, , .		0
28	Improved H[sub 2]S and Cl[sub 2] Sensing Characteristics of Pure and Au Incorporated WO[sub 3] Thin Films., 2011,,.		2
29	Ordering Induced Enhancement of Charge Carrier Mobility In CoPc Thin Films. , 2011, , .		0
30	Implication of Structural Disorder in The Charge Transport Properties of Cobalt-phthalocyanine Thin Films. , 2011, , .		0
31	Bipolar magnetization switching and its control in a Prussian blue type molecular magnetic compound. Journal of Physics: Conference Series, 2010, 200, 022073.	0.3	8
32	Cu1.5[Cr(CN)6]â6.5H2O nanoparticles: synthesis, characterization, and magnetic properties. Applied Physics A: Materials Science and Processing, 2010, 99, 79-83.	1.1	4
33	In-Vacuo thermal processing of $\hat{l}\pm$ -Al2O3 single crystals in boron ambience and its implication on TL & OSL response. Journal of Luminescence, 2010, 130, 1308-1312.	1.5	7
34	Role of structural disorder in charge transport properties of cobalt phthalocyanine thin films grown by molecular-beam epitaxy. Organic Electronics, 2010, 11, 1835-1843.	1.4	18
35	Langmuir–Blodgett films of ethylenedithiotetrathiafulvalene derivative containing hydroxyl groups. Thin Solid Films, 2010, 518, 5820-5826.	0.8	0
36	Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor. Sensors and Actuators B: Chemical, 2010, 147, 453-460.	4.0	78

#	Article	IF	Citations
37	In situ spectroscopic studies to investigate uncharacteristic NH3 sensing behavior of polycarbazole Langmuir–Blodgett films. Sensors and Actuators B: Chemical, 2010, 150, 7-11.	4.0	15
38	Sub-ppm H2S sensing at room temperature using CuO thin films. Sensors and Actuators B: Chemical, 2010, 151, 90-96.	4.0	196
39	Diodes based on bilayers comprising of tetraphenyl porphyrin derivative and fullerene for hybrid nanoelectronics. Chemical Physics Letters, 2010, 485, 137-141.	1.2	15
40	Bis-porphyrin films as ppb level chemiresistive sensors. Chemical Physics Letters, 2010, 488, 27-31.	1.2	19
41	Negative differential resistance in electrografted layer of N-(2-(4-diazoniophenyl)ethyl)-N′-hexylnaphthalene-1,8:4,5-tetracarboxydiimide tetrafluoroborate on Si. Chemical Physics Letters, 2010, 493, 135-140.	1.2	12
42	Clinical Investigations Effectiveness of two different HDR brachytherapy regimens with the same BED value in cervical cancer. Journal of Contemporary Brachytherapy, 2010, 2, 53-60.	0.4	2
43	Bias and temperature dependent charge transport in high mobility cobalt-phthalocyanine thin films. Applied Physics Letters, 2010, 96, .	1.5	29
44	Enhancement of Curie temperature in electrochemically prepared crystalline thin films of Prussian blue analogs KjFekII[CrIII(CN)6]lâ«mH2O. Journal of Applied Physics, 2010, 108, 023916.	1.1	19
45	Cyanide-bridged RuxNi3-3x/2[Cr(CN)6]2âzH2O molecular magnets: Controlling structural disorder and magnetic properties by a 4d ion (ruthenium) substitution. Journal of Applied Physics, 2010, 107, 053902.	1.1	13
46	Influence of Stoichiometry on the Magnetic Properties of Electrodeposited Thin Films of Iron Chromium Hexacyanide Based Molecular Magnet. , 2010, , .		0
47	Electrical And Positron Study Of The Interface Of Organic Semiconductor Heterojunction. , 2010, , .		0
48	Growth and gas-sensing studies of metal oxide semiconductor nanostructures. International Journal of Nanotechnology, 2010, 7, 883.	0.1	11
49	Photovoltaic Properties Of ZnO Nanoparticle Based Solid Polymeric Photoelectrochemical Cells., 2010,,.		4
50	Synthesis and magnetic properties of PVP coated copper-chromium hexacyanide nanoparticles. Journal of Physics: Conference Series, 2010, 200, 072057.	0.3	2
51	Room temperature ppb level Cl2 sensing using sulphonated copper phthalocyanine films. Talanta, 2010, 82, 1485-1489.	2.9	31
52	Electronic structure and magnetic properties of (Fe,Co)-codoped ZnO: Theory and experiment. Physical Review B, 2010, 81, .	1.1	33
53	Structural disorder in alkaline earth metal doped BaxMn[Fe(CN)6]2(x+1)/ $3\hat{A}$ -zH2O molecular magnets: a reverse Monte Carlo study. Physical Chemistry Chemical Physics, 2010, 12, 12208.	1.3	12
54	Temperature- and magnetic-field-controlled magnetic pole reversal in a molecular magnetic compound. Applied Physics Letters, 2009, 95, .	1.5	118

#	Article	IF	CITATIONS
55	Elastic scattering of electrons from dimethylsulfide and dimethylsulfoxide. Physical Review A, 2009, 79, .	1.0	4
56	Charge transport in polypyrrole:ZnO-nanowires composite films. Applied Physics Letters, 2009, 95, 202106.	1.5	16
57	Application of Aligned ZnO Nanowires/Nanobelts as a Room Temperature NO Gas Sensor. Journal of Nanoscience and Nanotechnology, 2009, 9, 5293-5297.	0.9	17
58	Looking through glass. IOP Conference Series: Materials Science and Engineering, 2009, 2, 011002.	0.3	1
59	Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe ₂) _{0.15} (GeTe) _{0.85}). Journal Physics D: Applied Physics, 2009, 42, 015502.	1.3	73
60	Nuclear detectors based on n-silicon/copper–phthalocyanine heterojunctions. Radiation Measurements, 2009, 44, 47-49.	0.7	7
61	NO2 sensors with room temperature operation and long term stability using copper phthalocyanine thin films. Sensors and Actuators B: Chemical, 2009, 143, 246-252.	4.0	72
62	Molecule-based magnets. Bulletin of Materials Science, 2009, 32, 217-225.	0.8	14
63	Poly(3-hexylthiophene) based field-effect transistors with gate SiO2 dielectric modified by multi-layers of 3-aminopropyltrimethoxysilane. Thin Solid Films, 2009, 517, 6124-6128.	0.8	7
64	Copper doped SnO2 nanowires as highly sensitive H2S gas sensor. Sensors and Actuators B: Chemical, 2009, 138, 587-590.	4.0	155
65	Hybrid molecule-on-silicon nanoelectronics: Electrochemical processes for grafting and printing of monolayers. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 325-344.	1.3	51
66	Parts-per-billion level chlorine sensors with fast kinetics using ultrathin cobalt phthalocyanine films. Chemical Physics Letters, 2009, 480, 185-188.	1.2	35
67	Impedance model of electrolyte–insulator–semiconductor structure with porous silicon semiconductor. Electrochimica Acta, 2009, 54, 3781-3787.	2.6	15
68	Self-assembled and electrochemically deposited mono/multilayers for molecular electronics applications. Applied Surface Science, 2009, 256, 407-413.	3.1	8
69	Morphology and structure of highly crystalline polyaniline films. Synthetic Metals, 2009, 159, 1067-1071.	2.1	17
70	Chlorine gas sensors using one-dimensional tellurium nanostructures. Talanta, 2009, 77, 1567-1572. Elastic differential cross sections for electron scattering from small math	2.9	28
71	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Miath	th.o	5
72	ZnO-nanowires modified polypyrrole films as highly selective and sensitive chlorine sensors. Applied Physics Letters, 2009, 94, .	1.5	54

#	Article	IF	CITATIONS
73	Temperature Dependent Current–Voltage Characteristics of Iron-Phthalocyanine Thin Films. Journal of Nanoscience and Nanotechnology, 2009, 9, 5262-5267.	0.9	2
74	Molecular Beam Epitaxy Growth of Iron Phthalocyanine Nanostructures., 2009,,.		1
75	Growth Mechanism of Zinc Oxide Nanostructures by Carbothermal Evaporation Technique., 2009,,.		O
76	Electrical Characterization of Self-Assembled Monolayers of Alkyltrichlorosilanes on Native Oxide of Silicon. Journal of Nanoscience and Nanotechnology, 2009, 9, 5273-5277.	0.9	5
77	Room-temperature H2S gas sensing at ppb level by single crystal In2O3 whiskers. Sensors and Actuators B: Chemical, 2008, 133, 456-461.	4.0	258
78	Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Applied Physics A: Materials Science and Processing, 2008, 90, 581-589.	1.1	121
79	Resistive memory effect in selfâ€assembled 3â€aminopropyltrimethoxysilane molecular multilayers. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 373-377.	0.8	11
80	Growth of iron phthalocyanine nanoweb and nanobrush using molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 154-163.	1.3	39
81	Electronic structure of highly crystalline polyaniline by study of tunneling conduction in n+-Si/self-assembled monolayer/polyaniline heterostructures. Organic Electronics, 2008, 9, 602-608.	1.4	8
82	Carbon doped yttrium aluminum garnet (YAG:C)—A new phosphor for radiation dosimetry. Radiation Measurements, 2008, 43, 492-496.	0.7	33
83	Electrical bistability in electrografted 5-(4-undecenyloxyphenyl)-10,15,20-triphenylporphyrin monolayer on Si. Chemical Physics Letters, 2008, 453, 68-72.	1.2	16
84	Oxygen induced hysteretic current-voltage characteristics of iron-phthalocyanine thin films. Journal of Applied Physics, 2008, 104, .	1.1	21
85	Microscopic Understanding of Negative Magnetization in Cu, Mn, and Fe Based Prussian Blue Analogues. Physical Review Letters, 2008, 101, 207206.	2.9	67
86	DNA-Templated Assemblies of Nickel Hexacyanoferrate Crystals. Journal of Physical Chemistry B, 2008, 112, 6467-6472.	1.2	9
87	Synthesis of Tellurium Nanostructures by Physical Vapor Deposition and Their Growth Mechanism. Crystal Growth and Design, 2008, 8, 238-242.	1.4	54
88	Low temperature thermopower and electrical transport in misfit Ca3Co4O9with elongatedc-axis. Journal Physics D: Applied Physics, 2008, 41, 085414. Effect of he substitution on the magnetic ordering in small math	1.3	11
89	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Ca<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:msub><mml:mrow><mml:mo< td=""><td>>(</td></mml:mo<><td>o><mml:msub 20</mml:msub </td></mml:mrow></mml:msub></mml:mrow>	>(o> <mml:msub 20</mml:msub
90	Physical Review B, 2008, 77, . Spin-glass behavior in ferromagnetic Fe[Fe(CN)6]â«xH2O nanoparticles. Journal of Applied Physics, 2008, 103, 123902.	1.1	24

#	Article	IF	Citations
91	Variation of structural and magnetic properties with composition in the(CoxNi1â^'x)1.5[Fe(CN)6]â^™zH2Oseries. Physical Review B, 2007, 75, .	1.1	45
92	Low current induced electroresistance in the polycrystalline La0.6Pb0.4MnO3 thin films. Journal of Applied Physics, 2007, 102, 043907.	1.1	4
93	Electrochemical grafting of octyltrichlorosilane monolayer on Si. Applied Physics Letters, 2007, 90, 113118.	1.5	16
94	Electrostatic ion trap and Fourier transform measurements for high-resolution mass spectrometry. Review of Scientific Instruments, 2007, 78, 083302.	0.6	24
95	Enhanced NO2 selectivity of hybrid poly(3-hexylthiophene): ZnO-nanowire thin films. Applied Physics Letters, 2007, 90, 043516.	1.5	61
96	Interfacial synthesis of long polyindole fibers. Journal of Applied Polymer Science, 2007, 103, 595-599.	1.3	51
97	Anomalous electrical transport properties of Ag/Al bilayers grown on Si by molecular beam epitaxy. Solid State Communications, 2007, 142, 200-205.	0.9	3
98	Time response and stability of porous silicon capacitive immunosensors. Biosensors and Bioelectronics, 2007, 22, 1027-1033.	5.3	14
99	Improved performance of polyaniline-uricase biosensor. Analytica Chimica Acta, 2007, 594, 17-23.	2.6	83
100	Preparation of nanofibrous polyaniline films and their application as ammonia gas sensor. Sensors and Actuators B: Chemical, 2007, 128, 286-292.	4.0	146
101	Growth of highly oriented crystalline polyaniline films by self-organization. Journal of Colloid and Interface Science, 2007, 313, 353-358.	5.0	33
102	Magneto-transport properties of nano-crystalline and poly-crystalline La0.6Pb0.4MnO3 thin films. Journal of Magnetism and Magnetic Materials, 2007, 313, 115-121.	1.0	5
103	Growth of nanostructures of Zn/ZnO by thermal evaporation and their application for room-temperature sensing of H 2 S gas. Applied Physics A: Materials Science and Processing, 2007, 87, 91-96.	1.1	39
104	ELECTROGRAFTING OF ORGANIC MONOLAYERS ON SILICON FOR MOLECULAR ELECTRONICS., 2007, , .		0
105	Polymerâ 'Surfactant Layered Heterostructures by Electropolymerization of Phenosafranine in Langmuirâ 'Blodgett Films. Journal of Physical Chemistry B, 2006, 110, 24530-24540.	1.2	8
106	Thickness dependent morphology and resistivity of ultra-thin Al films grown on Si(111) by molecular beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1254-1258.	0.8	4
107	Role of interfaces on the direct tunneling and the inelastic tunneling behaviors through metal/alkylsilane/silicon junctions. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1464-1469.	0.8	19
108	Self assembled monolayers on silicon for molecular electronics. Analytica Chimica Acta, 2006, 568, 84-108.	2.6	450

#	Article	IF	CITATIONS
109	Dynamics of transition from metastable disordered state to ordered state of vortex structure in 2H-NbSe2 single crystals. Physica C: Superconductivity and Its Applications, 2006, 436, 1-6.	0.6	1
110	Effect of deposition conditions on the microstructure and gas-sensing characteristics of Te thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 156-161.	1.7	18
111	SOM assembly of hydroxynaphthoquinone and its oxime: Polymorphic X-ray structures and EPR studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 130-138.	2.0	29
112	Highly sensitive hydrogen sulphide sensors operable at room temperature. Sensors and Actuators B: Chemical, $2006,115,270\text{-}275$.	4.0	63
113	Growth and branching of CuO nanowires by thermal oxidation of copper. Journal of Crystal Growth, 2006, 289, 670-675.	0.7	242
114	Magneto-transport and ferromagnetic resonance studies of polycrystalline La0.6Pb0.4MnO3 thin films. Solid State Communications, 2006, 137, 456-461.	0.9	7
115	Correlation between extrinsic magnetoresistance and electroresistance in La0.6Pb0.4MnO3 thin films as revealed from current–voltage and ferromagnetic resonance studies. Solid State Communications, 2006, 138, 430-435.	0.9	3
116	Self-assembled films of nickel hexacyanoferrate: Electrochemical properties and application in potassium ion sensing. Thin Solid Films, 2006, 497, 259-266.	0.8	27
117	Crystalline thin films of transition metal hexacyanochromates grown under Langmuir monolayer. Thin Solid Films, 2006, 513, 325-330.	0.8	15
118	Reversible dehydration polymerization of terephthalate bridged [{Cu2(2,2′-bpy)2(tp)(H2O)3(NO3)}·H2O·NO3]2. Mendeleev Communications, 2006, 16, 20-23.	0.6	5
119	A non-invasive ultrasonic gas sensor for binary gas mixtures. Sensors and Actuators B: Chemical, 2006, 115, 28-32.	4.0	30
120	Possible quantum critical point in(La1â^'xDyx)0.7Ca0.3MnO3. Physical Review B, 2006, 74, .	1.1	9
121	Slow magnetic relaxations in the anisotropic Heisenberg chain compound Mn(III) tetra(ortho-fluorophenyl)porphyrin-tetracyanoethylene. Physical Review B, 2006, 74, .	1.1	51
122	Room-Temperature Ionic Liquids: For a Difference in the Supramolecular Synthesis. Macromolecular Symposia, 2006, 241, 83-87.	0.4	15
123	Tunneling characteristics and resistivity behavior ofLa0.6Pb0.4MnO3grain boundaries. Physical Review B, 2006, 73, .	1.1	10
124	Room temperature operated ammonia gas sensor using polycarbazole Langmuir–Blodgett film. Sensors and Actuators B: Chemical, 2005, 107, 277-282.	4.0	37
125	Detection of reducing gases by SnO2 thin films: an impedance spectroscopy study. Sensors and Actuators B: Chemical, 2005, 107, 360-365.	4.0	43
126	Anisotropic electrical transport studies of Ca3Co4O9 single crystals grown by the flux method. Journal of Crystal Growth, 2005, 277, 246-251.	0.7	33

#	Article	IF	Citations
127	Morphology and resistivity of Al thin films grown on Si (111) by molecular beam epitaxy. Vacuum, 2005, 79, 178-185.	1.6	26
128	A study on Langmuir–Blodgett films of conducting polycarbazole. Thin Solid Films, 2005, 493, 267-272.	0.8	10
129	Surface and electrical-transport studies of Ag/Al bilayer-structures grown by molecular beam epitaxy. Applied Surface Science, 2005, 243, 220-227.	3.1	10
130	Ferromagnetic resonance studies of nanocrystalline La0.6Pb0.4MnO3 thin films. Materials Letters, 2005, 59, 728-733.	1.3	14
131	Energetics of model compounds of water oxidizing complex containing quinone cofactors. Journal of Thermal Analysis and Calorimetry, 2005, 81, 75-82.	2.0	4
132	A Tunnel Current in Self-Assembled Monolayers of 3-Mercaptopropyltrimethoxysilane. Small, 2005, 1, 725-729.	5.2	53
133	A NEW GRIDLESS ION OPTICS FOR HIGH RESOLUTION TIME-OF-FLIGHT MASS SPECTROMETER. International Journal of Modern Physics B, 2005, 19, 2621-2626.	1.0	6
134	Morphology-dependent electric transport in textured ultrathin Al films grown on Si. Journal of Applied Physics, 2005, 98, 026103.	1.1	5
135	Sodium Chloride and Ethanol Induced Sphere to Rod Transition of Triblock Copolymer Micelles. Journal of Physical Chemistry B, 2005, 109, 5653-5658.	1.2	132
136	Magnetic properties of substitutional solid solutions of nickel and iron hexacyanoferrate–hexacyanochromate. Philosophical Magazine, 2005, 85, 3659-3672.	0.7	11
137	Fowler–Nordheim tunnelling and electrically stressed breakdown of 3-mercaptopropyltrimethoxysilane self-assembled monolayers. Nanotechnology, 2005, 16, 3064-3068.	1.3	16
138	Magnetization and magnetotransport studies of Y Ba2Cu3O7ÂÂ/La1ÂxPbxMnO3heterostructures. Superconductor Science and Technology, 2004, 17, 342-346.	1.8	5
139	Polyaniline–Prussian blue hybrid: synthesis and magnetic behaviour. Philosophical Magazine, 2004, 84, 2127-2138.	0.7	26
140	Growth and morphology of the single crystals of thermoelectric oxide material NaxCoO2. Crystal Research and Technology, 2004, 39, 572-576.	0.6	10
141	Evidence of ferromagnetic domains in the (La0.757Dy0.243)0.7Ca0.3MnO3 perovskite. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1288-1289.	1.0	3
142	Macroporous silicon based capacitive affinity sensorâ€"fabrication and electrochemical studies. Sensors and Actuators B: Chemical, 2004, 97, 334-343.	4.0	52
143	Room temperature operating ammonia sensor based on tellurium thin films. Sensors and Actuators B: Chemical, 2004, 98, 154-159.	4.0	81
	Syntheses and crystal structures of three novel Cu(II) coordination polymers of different		

Syntheses and crystal structures of three novel Cu(II) coordination polymers of different dimensionality constructed from Cu(II) carboxylates (carboxylate=malonate (mal), 2 acetate (ac),) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 Polyhedron, 2004, 23, 3007-3019.

#	Article	IF	CITATIONS
145	Growth of nanocrystalline Pd films on Si (111). Applied Surface Science, 2004, 228, 302-305.	3.1	9
146	Polyaniline Nanoparticles Prepared in Rodlike Micelles. Langmuir, 2004, 20, 4874-4880.	1.6	63
147	Design of molecular magnets. Macromolecular Symposia, 2004, 212, 141-158.	0.4	3
148	Synthesis of surfactant encapsulated nickel hexacyanoferrate nanoparticles and deposition of their Langmuir–Blodgett film. Journal of Materials Chemistry, 2004, 14, 1430-1436.	6.7	54
149	On the Presence of Cu1+ in the Superconducting (Hg,M)Sr2CuO4+ \hat{l} ; M = Cr, Mo, or Re. Journal of Superconductivity and Novel Magnetism, 2003, 16, 581-584.	0.5	1
150	X-,K- and Q-band ESR studies on intercalated Fe0.9PS3(Phen)0.4. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 141-143.	1.0	8
151	EPR studies on BEDT-TTF intercalated MnPS3 molecular magnet. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 416-418.	1.0	9
152	In situ X-ray photoelectron spectroscopy of Ag/Al bilayers grown by molecular beam epitaxy. Journal of Crystal Growth, 2003, 256, 201-205.	0.7	15
153	Growth of cubic crystals of cobalt-hexacyanoferrate under the octadecyl amine monolayer. Journal of Crystal Growth, 2003, 258, 197-203.	0.7	31
154	Effect of interface pinning on dissipation, volume pinning force and measurement of upper critical magnetic field in MgB2 thin films. Physica C: Superconductivity and Its Applications, 2003, 385, 313-321.	0.6	9
155	Studies on the formation of Langmuir monolayer and Langmuir–Blodgett films of octadecyl amine-bromocresol purple dye complex. Thin Solid Films, 2003, 440, 240-246.	0.8	12
156	Magnetic and electrical properties of (La1â^'xDyx)0.7Ca0.3MnO3perovskites. Physical Review B, 2003, 68, .	1.1	28
157	In-plane and out-of-plane anisotropic magnetoresistances in La1 â^'xPbxMnO3thin films. Philosophical Magazine, 2003, 83, 3181-3191.	0.7	5
158	Cold Rolled Texture and Microstructure in Types 304 and 316L Austenitic Stainless Steels. ISIJ International, 2003, 43, 1581-1589.	0.6	32
159	lâ^'Vcharacteristic measurements to study the nature of the vortex state and dissipation inMgB2thin films. Physical Review B, 2002, 66, .	1.1	13
160	Crystallization of Prussian Blue Analogues at the Airâ [*] Water Interface Using an Octadecylamine Monolayer as a Template. Langmuir, 2002, 18, 7409-7414.	1.6	46
161	Anisotropy of critical current density inc-axis-orientedMgB2thin films. Physical Review B, 2002, 65, .	1.1	14
162	Structure, Insertion Electrochemistry, and Magnetic Properties of a New Type of Substitutional Solid Solutions of Copper, Nickel, and Iron Hexacyanoferrates/Hexacyanocobaltates. Inorganic Chemistry, 2002, 41, 5706-5715.	1.9	120

#	Article	IF	Citations
163	Superconductivity in (Hg,Mo)Sr2CuO4+δ system. Materials Chemistry and Physics, 2002, 75, 144-146.	2.0	3
164	Magnetization study of mercurocuprate (Hg,Re)Sr2CuO4+δ. Pramana - Journal of Physics, 2002, 58, 839-841.	0.9	2
165	[Mn(tacn)]2Mo(CN)7·5H2O: a 90K ferromagnet. Physica B: Condensed Matter, 2002, 321, 87-90.	1.3	6
166	Magnetism as a functionality at the molecular level. Physica B: Condensed Matter, 2002, 321, 204-212.	1.3	22
167	XPS and AFM investigations of annealing induced surface modifications of MgO single crystals. Journal of Crystal Growth, 2002, 236, 661-666.	0.7	120
168	Enhanced magnetoresistance in nanocrystalline La0.6Pb0.4MnO3 thin films. Journal of Crystal Growth, 2002, 244, 313-317.	0.7	10
169	EPR studies on (NBu4)2Co2[Cu(opba)]3·S, where opba=ortho-phenylenebis(oxamato) and S=Solvent: unusual case of long-range magnetic order in weakly interacting systems. Chemical Physics Letters, 2002, 357, 457-463.	1.2	16
170	Magnetization and Re LIII-Edge Studies of (Hg,Re)Sr2CuO4 + \hat{l} System. Journal of Superconductivity and Novel Magnetism, 2002, 15, 135-139.	0.5	4
171	Growth of epitaxial multilayers consisting of alternately stacked superconducting YBa2Cu3O7â^δand colossal magnetoresistive La1â^'xPbxMnO3 layers. Journal of Crystal Growth, 2002, 243, 134-142.	0.7	9
172	Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling. Synthetic Metals, 2001, 125, 401-413.	2.1	60
173	Effect of Dy substitution for La in La0.7Ca0.3MnO3 perovskite. Journal of Alloys and Compounds, 2001, 326, 89-93.	2.8	19
174	Stability of Sr3Ti2O7 structure in La1.2(Sr1 â^' xCax)1.8Mn2O7 and Ca3 â^' yLayMn2O7. Journal of Materials Chemistry, 2001, 11, 1158-1161.	6.7	5
175	Polymer-mediated synthesis of \hat{l}^3 -Fe2O3 nano-particles. Polyhedron, 2001, 20, 1489-1494.	1.0	12
176	A complex of a chiral substituent-based nitroxide triradical having two chiral centres with Mn(hfac)2. Polyhedron, 2001, 20, 1495-1498.	1.0	8
177	Azido-mediated ferromagnetic exchange interaction in the M(II)–oxine complexes. Polyhedron, 2001, 20, 1499-1503.	1.0	1
178	Electron magnetic resonance studies of the intercalation ferromagnet 2, 2'-bipyridine-MnPS 3 above and below Curie temperature. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 189-192.	0.1	0
179	A Three-Dimensional Ferrimagnet with a High Magnetic Transition Temperature (TC) of 53 K Based on a Chiral Molecule. Angewandte Chemie - International Edition, 2001, 40, 4242-4245.	7.2	226
180	{(NBu4)2Mn[Cu(opba)]2}n: a new structural class among †opba†bimetallic magnets. Inorganica Chimica Acta, 2001, 326, 106-110.	1.2	12

#	Article	IF	CITATIONS
181	Susceptibility and X-Ray Absorption Measurements on Superconducting (Hg,Mo)Sr2CuO4+δSystem. Journal of Superconductivity and Novel Magnetism, 2001, 14, 437-441.	0.5	8
182	Annealing Effects in (Hg,Cr)Sr2CuO4+Î: Transport and X-Ray Absorption Studies. Journal of Superconductivity and Novel Magnetism, 2001, 14, 429-435.	0.5	9
183	Magnetization Study of (Hg,Cr)Sr2CuO4 + \hat{l} Superconductor. Journal of Superconductivity and Novel Magnetism, 2001, 14, 519-523.	0.5	4
184	Transport and Cu K-XANES Studies of (Hg,Cr)Sr2(Ca,Y)Cu2O6 + $\hat{\Gamma}$. Journal of Superconductivity and Novel Magnetism, 2001, 14, 687-691.	0.5	3
185	SUPERCONDUCTIVITY AND CuK-XANES OF (Hg, Re)Sr2CuO4+Î'. Modern Physics Letters B, 2001, 15, 261-268.	1.0	5
186	Microwave absorption studies of diluted high-temperature superconductors: delineation of superconductor-insulator-superconductor and superconductor-normal-superconductor junctions. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 267-277.	0.6	0
187	Comment on `The metal-insulator transition and ferromagnetism in the electron-doped layered manganates La2.3-xYxCa0.7Mn2O7(x= 0.0,0.3,0.5)'. Journal of Physics Condensed Matter, 2001, 13, 3805-3807.	0.7	1
188	The structural and superconducting properties of R _{1â^2x} Ca _x Th _x BaSrCu ₃ O _{7â^delta;} (R = Eu or) Tj	ETQq000	0 rgBT /Ove
	Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 1789-1797.		
189	Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr. Physica B: Condensed Matter, 2000, 275, 308-315.	1.3	53
190	Example of a single trans-azido-bridged Mn(II) chain: synthesis, structural and magnetic characteristics. Inorganica Chimica Acta, 2000, 300-302, 778-782.	1.2	32
191	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2000, 13, 163-170.	0.5	3
192	Title is missing!. Journal of Superconductivity and Novel Magnetism, 2000, 13, 569-573.	0.5	1
193	The interrelationship of Cu effective charge and superconductivity in the T´-type Gd1.85-xPrxCe0.15CuOysystem. Journal of Physics Condensed Matter, 2000, 12, L9-L12.	0.7	О
194	Comment on "Giant magnetoresistance of a two-dimensional ferromagnet La2â^2xCa1+2xMn2O7―[Appl. Phys. Lett. 68, 3638 (1996)]. Applied Physics Letters, 2000, 76, 1956-1957.	1.5	13
195	Comment on "Pressure-induced changes in transport properties of layeredLa1.2Ca1.8Mn2O7― Physical Review B, 2000, 61, 16241-16242.	1.1	3
196	Does the LaMnO3phase accept Ce-doping?. Journal of Physics Condensed Matter, 2000, 12, L719-L722.	0.7	42
197	Growth of Cationic Micelles in the Presence of Organic Additives. Langmuir, 2000, 16, 7187-7191.	1.6	82
198	Hepta/octa cyanomolybdates with Fe2+: influence of the valence state of Mo on the magnetic behavior. New Journal of Chemistry, 2000, 24, 871-876.	1.4	86

#	Article	IF	CITATIONS
199	Stability of the layered Sr3Ti2O7structure in La1.2(Sr1-xCax)1.8Mn2O7. Journal of Physics Condensed Matter, 2000, 12, 1683-1689.	0.7	37
200	Electron Magnetic Resonance Studies of the Intercalation Ferromagnet 2,2′-bipyridine-MnPS ₃ Above and Below Curie Temperature. Molecular Crystals and Liquid Crystals, 2000, 348, 295-300.	0.3	O
201	Granular behaviour and microstructure of Tl-doped : impact of grinding. Superconductor Science and Technology, 1999, 12, 259-263.	1.8	2
202	Electrical conductivity and magnetic behavior of La0.67Ca0.33MnO3 as influenced by substitution of Co. Physica B: Condensed Matter, 1999, 266, 332-339.	1.3	23
203	Influence of the size of dopant ion on ferromagnetic behavior of Ln0.7A0.3CoO3 system [Ln=La, Nd; and A=Ca, (Ca, Sr), Sr, (Sr, Ba), Ba]. Physica B: Condensed Matter, 1999, 271, 116-124.	1.3	41
204	Structural and superconducting properties of Eu1â^'xPrxBaSrCu3O7â^'Î'. Physica C: Superconductivity and Its Applications, 1999, 311, 246-252.	0.6	4
205	Manifestation of T′ and 1-2-3 features in [Nd2/3(Ce1â°'xThx)1/3]2(Ba2/3Nd1/3)2Cu3O9â°Î´ compounds: a XAN study. Physica C: Superconductivity and Its Applications, 1999, 314, 98-104.	IES 0.6	5
206	Photo-induced changes in magnetic order in the molecular magnet (NBu4)2Mn2[Cu(opba)]3·6DMSO·1H2O. Chemical Physics Letters, 1999, 301, 385-388.	1.2	15
207	Hole states in Eu0.9 â^ xPrxCa0.1BaSrCu3O7 â^ δ studied by X-ray absorption spectroscopy. Journal Chemical Society Dalton Transactions, 1999, , 2065-2070.	of the	1
208	Dye adsorption on self-assembled silane monolayers: optical absorption and modeling. Journal of Materials Chemistry, 1999, 9, 1847-1851.	6.7	5
209	Ferromagnetism at 19K in a bimetallic compound based on 1,2-propanediamine ligand. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 127-135.	0.6	3
210	Influence of Structural Anisotropy on the Irreversibility Line of High-T c Cuprates. Journal of Superconductivity and Novel Magnetism, 1998, 11, 689-691.	0.5	6
211	Dithiaheterocycle-annelated tetrathiafulvalene π-donors: a structure–property correlation study. Journal of the Chemical Society Perkin Transactions 1, 1998, , 1769-1778.	0.9	10
212	Flux-pinning behavior and the interlayer coupling of the Hg0.7Cr0.3Sr2CuO4+Î′superconductor. Physical Review B, 1998, 58, 538-543.	1.1	19
213	Electron paramagnetic resonance studies in doped with: evidence for cationic mobility. Journal of Physics Condensed Matter, 1997, 9, 551-556.	0.7	6
214	Irreversibility line of the TI monolayer superconductor TIBaSrCaCu2O7. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 75, 497-502.	0.6	1
215	Coexistence of Spin Fluctuations and Magnetic Order in (Nbu4)2Mn2 [Cu(Opba)]3: An Epr Evidence. Molecular Crystals and Liquid Crystals, 1997, 306, 219-225.	0.3	2
216	Electron paramagnetic resonance studies of intrinsic semiconductor UMo ₆ S ₈ : Evidence for dynamically averaged resonance of U ⁴⁺ and conduction electrons. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 75, 503-508.	0.6	1

#	Article	IF	Citations
217	Dc and ac magnetic properties of the two-dimensional molecular-based ferrimagnetic materials A2M2[Cu(opba)]3nsolv [A+=cation, MII=MnII or CoII, opba=ortho-phenylenebis(oxamato) and solv=solvent molecule]. Journal of Materials Chemistry, 1997, 7, 1263-1270.	6.7	37
218	Dramatic Modifications of Magnetic Properties through Dehydrationâ^'Rehydration Processes of the Molecular Magnetic Sponges CoCu(obbz)(H2O)4·2H2O and CoCu(obze)(H2O)4·2H2O, with obbz = N,N'-Bis(2-carboxyphenyl)oxamido and obze = N-(2-Carboxyphenyl)-N'-(carboxymethyl)oxamido. Inorganic Chemistry, 1997, 36, 6374-6381.	1.9	123
219	Muon spin relaxation studies on the ferromagnet MnCu(obbz)1H2O. Synthetic Metals, 1997, 85, 1751-1752.	2.1	O
220	Raman study of the Hg0.7Cr0.3Sr2CuO4+ \hat{l} superconductors. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1039-1040.	0.6	4
221	Effect of Ca doping on the structural and superconducting properties of EuBaSrCu3O7â^Î. Journal of Superconductivity and Novel Magnetism, 1997, 10, 645-647.	0.5	2
222	Two dimensional superconducting behavior of Hg0.7Cr0.3Sr2CuO4+δ. Physica C: Superconductivity and Its Applications, 1997, 282-287, 2001-2002.	0.6	2
223	X-ray absorption spectroscopic studies of the T′-type Gd1.85∳xPrxCe0.15CuOy system. Physica C: Superconductivity and Its Applications, 1997, 292, 183-188.	0.6	4
224	An EPR study of spin correlations and existence of ordered and disordered phases in (NBu4)2Mn2[Cu(opba)]3·6DMSO·1H2O. Chemical Physics Letters, 1997, 281, 292-296.	1.2	20
225	Neutron structural study on Y0.8Ca0.1Ce0.1Ba2Cu4O8 superconductor. Physica B: Condensed Matter, 1996, 223-224, 568-570.	1.3	O
226	Superconductivity in (Gd1.85 â° xPrxCe0.15)CuO4. Physica B: Condensed Matter, 1996, 223-224, 551-553.	1.3	2
227	Effect of substitution of Ca for Nd and Sr on the superconducting behaviour of NdBaSrCu3O7â^Î. Physica C: Superconductivity and Its Applications, 1996, 256, 51-56.	0.6	7
228	Positron annihilation studies on a tetragonal CaLaBaCu3O6.85 superconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 219, 117-120.	0.9	2
229	Infrared spectra and normal modes of orthorhombic Bi2Sr2(Ca1â^'xYx)Cu2O8+y. Journal of Molecular Structure, 1996, 375, 9-21.	1.8	0
230	A structural study of chemical stability of $(Y1?x \text{ Ca x})(Ba2?x \text{ La x})Cu3O7??(x=0.0, 0.2, and 0.4)$. Journal of Superconductivity and Novel Magnetism, 1996, 9, 615-618.	0.5	6
231	Neutron diffraction structural study of 1201 superconductor (Hg0.7Cr0.3)Sr2CuO?. Journal of Superconductivity and Novel Magnetism, 1996, 9, 253-257.	0.5	10
232	Magnetization behavior of (NBu4)2Mn2[Cu(opba)]3 and related solvated ferromagnets. Journal of Applied Physics, 1996, 79, 5260.	1.1	28
233	Influence of simultaneous substitution of Ca and Co in a YBa2Cu3O7 â^' δ superconductor: Neutron	1.0	
	structural studies. Physica B: Condensed Matter, 1995, 213-214, 90-93.	1.3	1

#	Article	IF	CITATIONS
235	Synthesis and neutron structural studies of (Pb/Cu)-1201 superconductor. Journal of Superconductivity and Novel Magnetism, 1995, 8, 163-167.	0.5	1
236	Neutron structural investigations of Y1?x CaxBa2Cu3?y Co y O7 i 2 $\frac{1}{2}$?. Journal of Superconductivity and Novel Magnetism, 1995, 8, 271-277.	0.5	5
237	Superconducting behaviour of eight-year-old La1.8Sr0.2CuO4. Applied Superconductivity, 1995, 3, 593-598.	0.5	O
238	Superconducting behaviour of co-doped Y1â^'xCaxBa2Cu3â^'xMxO7â^'Î^ (M = Ni or Zn and 0.0 â $@\frac{1}{2}$ xâ $@\frac{1}{2}$ 0.30). C: Superconductivity and Its Applications, 1995, 243, 160-166.	Physica 0:6	9
239	Infrared spectra and normal vibrations of (La,Nd)BaCaCu3O7. Journal of Molecular Structure, 1995, 351, 95-105.	1.8	1
240	Superconducting behaviour of YO·8CeO·1CaO·1Ba2Cu4O8. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1995, 71, 1137-1143.	0.6	2
241	The irreversibility line of Nd-223 superconductor as determined by DC magnetization. Superconductor Science and Technology, 1995, 8, 177-179.	1.8	3
242	Neutron structural studies on Sr-free 2:2:0:1 phase Bi2(Ca0.65Nd0.35)2CuOy. Journal of Alloys and Compounds, 1995, 221, 56-59.	2.8	0
243	Magnetoconductivity of Bi2Sr2Ca1â^'xYxCu2O8+l̂ în fluctuation regime. Journal of Applied Physics, 1994, 76, 6944-6946.	1.1	3
244	Neutron structural study of the Bi-monolayer compound (Bi0.5Cu0.5)Sr2(Y0.8Cu0.2)Cu2O7 + ??the Role of excess oxygen in superconductivity. Journal of Superconductivity and Novel Magnetism, 1994, 7, 857-863.	0.5	3
245	Magnetism of Pr ions and superconductivity in Bi2â^'xPbxSr2â^'xPrxCuO6+δ. Physica B: Condensed Matter, 1994, 194-196, 2215-2216.	1.3	1
246	Suppression of superconductivity by substitution of Th for Ce in (NdCe)2 (BaNd)2Cu3O9â^'d. Physica C: Superconductivity and Its Applications, 1994, 232, 127-130.	0.6	10
247	Phase breaking effects in magnetoconductivity of YBa2Cu3O7â^î^and Bi2Sr2CaCu3O8. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1443-1444.	0.6	O
248	Spin-density-wave antiferromagnetism in chromium alloys. Reviews of Modern Physics, 1994, 66, 25-127.	16.4	404
249	Instability of Y- and rare-earth-substituted Bi(Pb)-2223 phase. Journal of Materials Chemistry, 1994, 4, 1077.	6.7	0
250	The influence of substitution of Th on the superconducting behaviour of YBa2Cu4O8. Physica C: Superconductivity and Its Applications, 1993, 218, 457-462.	0.6	7
251	Synthesis and superconducting properties of Ca1â^ $^{\prime}$ xRxBaLaCu3O7â^ $^{\prime}$ Î $^{\prime}$ (R = CeandNd) systems. Physica C: Superconductivity and Its Applications, 1993, 216, 181-186.	0.6	O
252	On the evolution of superconductivity in La1.5â^'xBa1.5â^'xCa2xCu3O7â^'Î'(0.0â $@\frac{1}{2}$ xâ $@\frac{1}{2}$ 1.0). Physica C: Superconductivity and Its Applications, 1993, 208, 143-148.	0.6	16

#	Article	IF	CITATIONS
253	The influence of substitution of Ce on the superconducting behaviour of YBa2Cu4O8 and DyBa2Cu4O8. Physica C: Superconductivity and Its Applications, 1993, 204, 413-418.	0.6	13
254	Influence of Ba content and Ce doping on the structural features of YBa2Cu4O8 superconductor?a neutron study. Journal of Superconductivity and Novel Magnetism, 1993, 6, 265-272.	0.5	3
255	Neutron Structural Studies of Superconducting Bi2Sr2CuOâ^1/46and Bi2-xPbxSr1.8La0.2CuO6+Î (x=0.0 and) Tj E	TQg1 1 0.:	78 4 314 rgET
256	Comment on â€~â€~Raman spectra of (Bi,Pb)2Sr2CaCu2O8+ysingle crystals and the role of lead substitution''. Physical Review B, 1992, 45, 2527-2527.	1.1	1
257	Stability of 4-year-old YBa2Cu3O7â^'x. Physica B: Condensed Matter, 1992, 180-181, 429-431.	1.3	5
258	Phase stability and superconducting characteristics of CaBa(La1-xRx)Cu3O7-δ(R=rare earth) system. Physica C: Superconductivity and Its Applications, 1992, 199, 240-246.	0.6	13
259	Neutron profile refinement study of the superconductors Bi2Ca1â^'xYxS2Cu2O8+δ. Physica B: Condensed Matter, 1991, 174, 367-371.	1.3	5
260	Neutron diffraction study of the superconductor CaBaLaCu3O7â~δ. Physica B: Condensed Matter, 1991, 174, 372-377.	1.3	9
261	Phonon density of states in Tl2CaBa2Cu2O8. Physica B: Condensed Matter, 1991, 174, 378-381.	1.3	11
262	A neutron diffraction study of the structure of Bi1.6Pb0.4Ca1Sr2Cu2Oy. Physica C: Superconductivity and Its Applications, 1991, 173, 267-273.	0.6	16
263	Paraconductivity in YBa2(Cu1â^'xNix)3O7â€"y and Bi2Sr2Ca1â^'xYxCu2O8+y. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1845-1846.	0.6	1
264	Inelastic neutron scattering from Tl2CaBa2Cu2O8. Bulletin of Materials Science, 1991, 14, 603-605.	0.8	0
265	Doppler-broadened positron annihilation studies in Y-Ba-Cu-O, Tl-Ca-Ba-Cu-O and Bi-Ca-Sr-Cu-O superconductors. Bulletin of Materials Science, 1991, 14, 681-686.	0.8	3
266	Thermoelectric power of single-phase samples of Tl2CaBa2Cu2O y and Ba2CaSr2Cu2O y. Bulletin of Materials Science, 1991, 14, 827-830.	0.8	0
267	On the synthesis and structure of single-phase (Bi, Pb)2Ca2Sr2Cu3O10. Bulletin of Materials Science, 1991, 14, 223-226.	0.8	2
268	Synthesis of single phase Tl-2223 superconductors: How much thallium do we really need?. Bulletin of Materials Science, 1991, 14, 241-246.	0.8	3
269	Effect of non-stoichiometry and Ce-doping on the tetragonal superconducting phase CaBaLaCu3O7â^Î. Bulletin of Materials Science, 1991, 14, 275-278.	0.8	2

Superconductivity of Bi-2201 (n=1) as influenced by the substitution of Pb and/or rare-earths (R=La, Nd) Tj ETQq0 $_{0.6}^{0.0}$ rgBT /Qverlock 10 $_{28}^{0.0}$

270

#	Article	IF	CITATIONS
271	TlCaBaSrCu2O7â^δ, a new 94 K superconductor. Physica C: Superconductivity and Its Applications, 1991, 172, 450-454.	0.6	19
272	Stabilization of superconductivity in TlBa2CuO5â^Î at 9.5 K and its enhancement to 43 K in TlBaSrCuO5â^Î. Physica C: Superconductivity and Its Applications, 1991, 175, 183-186.	0.6	46
273	Ambient pressure synthesis and neutron structure analysis of YBa2Cu4O8. Physica C: Superconductivity and Its Applications, 1991, 182, 67-72.	0.6	16
274	Effect of partial substitution of Ni and Zn for Cu in CaBaLaCu3O7â~δ superconductor. Physica C: Superconductivity and Its Applications, 1991, 180, 324-330.	0.6	3
275	Novel structural features of Pb-stabilised Bi-2223 high-Tc phase from neutron-diffraction study. Physica C: Superconductivity and Its Applications, 1990, 167, 291-296.	0.6	38
276	Superconducting behavior of tetragonal Ca1â^'xCdxBaLaCu3O7â^'δ. Physica C: Superconductivity and Its Applications, 1990, 172, 325-330.	0.6	9
277	Positron annihilation studies of Bi2CaSr2Cu2Ox and Bi1.6Pb0.4Ca2Sr2Cu3Oy in the region of the superconducting transition. Solid State Communications, 1990, 73, 623-627.	0.9	5
278	Thermopower of 2122 thallium high temperature superconductors. Solid State Communications, 1990, 73, 637-640.	0.9	8
279	Paraconductivity of Tl2Ca1Ba2Cu2O8â°'â^,. Solid State Communications, 1990, 75, 415-419.	0.9	5
280	India update on superconductivity research. Superconductor Science and Technology, 1990, 3, 477-478.	1.8	2
281	Nature of the superconducting transition in high Tc Tl-Ca-Ba-Cu-O compounds: Positron annihilation studies. Physica C: Superconductivity and Its Applications, 1989, 159, 75-80.	0.6	8
282	Fluctuation induced excess conductivity in Tl2CaBa2Cu2O8. Physica C: Superconductivity and Its Applications, 1989, 159, 797-800.	0.6	13
283	Effect of argon-annealing and subsequent oxygen-annealing on the superconductivity and structure of Tl2CaBa2Cu2O8-x. Physica C: Superconductivity and Its Applications, 1989, 159, 811-815.	0.6	18
284	Superconducting transition temperature of single-phase Tl-2223: Crucial role of Ca-vacancies and Tl-content. Physica C: Superconductivity and Its Applications, 1989, 160, 155-160.	0.6	24
285	Zero resistance at 120 K in Bi(Pb)-Ca-Sr-Cu oxide. Physica C: Superconductivity and Its Applications, 1989, 157, 491-494.	0.6	38
286	On the coordination of bismuth in Bi2CaSr2Cu2O8 - A2aa/Amaa structures revisited. Physica C: Superconductivity and Its Applications, 1989, 157, 515-519.	0.6	20
287	Towards the synthesis of the single-phase Bi-2223 superconductor from stoichiometric (Bi,) Tj ETQq1 1 0.784314	rgBT /Ov	erlock 10 Tf 27
288	Superconducting behaviour of Bi1.7Pb0.2Sb0.1Ca2.0Sr2.0Cu2.8Ox. Solid State Communications, 1989, 71, 935-938.	0.9	22

#	Article	IF	CITATIONS
289	Ageing effects in high-Tc YBa2Cu3O7â''x superconductor a neutron diffraction study. Solid State Communications, 1988, 65, 991-995.	0.9	10
290	Unique signatures of microwave absorption of superconducting YBa2Cu3O7â^'x. Solid State Communications, 1988, 66, 1219-1224.	0.9	10
291	Evidence for K-substitution in the Tl-sites of superconducting Tl2CaBa2Cu2Oχ: Neutron diffraction studies. Physica C: Superconductivity and Its Applications, 1988, 156, 599-603.	0.6	35
292	Stabilizing the high-Tc superconductor Bi2Sr2Ca2Cu3O10+x by Pb substitution. Physica C: Superconductivity and Its Applications, 1988, 156, 251-255.	0.6	116
293	Magnetism and mixed valence in some R2M3X5 compounds: $R = Ce$, Eu, U; $M = d$ metals, $X = Si$, Ge. Materials Research Bulletin, 1988, 23, 1781-1785.	2.7	15
294	High temperature superconductivity in bismuth-alkaline earth-copper-oxygen system. Pramana - Journal of Physics, 1988, 30, L469-L471.	0.9	2
295	On the synthesis of high-temperature superconducting compounds in the Biî—¸Srî—¸Caî—¸Cuî—¸O system. Materials Letters, 1988, 6, 274-276.	1.3	4
296	Enhancement of transport critical current density by Gd substitution in YBa2Cu3O7. Applied Physics Letters, 1988, 52, 1447-1448.	1.5	2
297	Synthesis and properties of a 125 K superconductor in the Tlâ€Caâ€Baâ€Cuâ€O system. Applied Physics Letters, 1988, 53, 414-416.	1.5	21
298	THERMOPOWER MEASUREMENTS ON Cr-Al SINGLE CRYSTALS IN THE MAGNETIC TRIPLE POINT REGION. Journal De Physique Colloque, 1988, 49, C8-217-C8-218.	0.2	1
299	Superconductivity characteristics of the system Y1.2Ba0.8CuO4â^Î. Phase Transitions, 1987, 10, 49-59.	0.6	1
300	Studies on superconducting behaviour of La _{2-X} M _X CuO ₄ . (M = Ba,) Tj ETQ	q8.80 rgB	3T ₁ /Overlock
301	On the size of the electrical resistivity anomaly at the Neel transition of dilute Cr-Al alloys. Journal of Physics F: Metal Physics, 1987, 17, L65-L69.	1.6	5
302	Magnetic properties of two new uranium-based alloys: UAuCu4and UPdCu4. Journal of Physics F: Metal Physics, 1987, 17, L25-L28.	1.6	9
303	Possible superconductivity at 140k. Phase Transitions, 1987, 10, 61-66.	0.6	0
304	Effect of slow cooling rates on the superconducting characteristics of YBa2Cu3O7â^2x. Applied Physics Letters, 1987, 51, 1367-1369.	1.5	12
305	Magnetic phase diagram of dilute Crâ€Al system from electrical resistivity studies on single crystals. Journal of Applied Physics, 1987, 61, 3994-3996.	1.1	8
306	Superconductivity in shockedCu2Mo6S8. Physical Review B, 1987, 36, 3941-3943.	1.1	0

#	Article	IF	CITATIONS
307	Bulk superconductivity at 36 K inLa1.8Sr0.2CuO4. Physical Review B, 1987, 35, 7122-7123.	1.1	5
308	On the synthesis and superconducting properties of La1.8M0.2CuO4 systems. Materials Letters, 1987, 5, 165-169.	1.3	7
309	Superconductivity and localization in (La,Y)2-xSrxCuO4. Solid State Communications, 1987, 63, 905-906.	0.9	3
310	Electrical conductivity behaviour of Ni2â^'x Cu x Mo6S8. Journal of Materials Science Letters, 1987, 6, 839-840.	0.5	0
311	X-ray diffraction coupled thermogravimetric investigations of YBa2Cu3O7â^'x. Solid State Communications, 1987, 64, 1429-1433.	0.9	27
312	High temperature x-ray powder diffractometric studies of the superconducting compound YBa2Cu3O7-x from room temperature to 1300 K in air. Solid State Communications, 1987, 64, 329-333.	0.9	17
313	The transition width and critical current density measurements on slow-cooled YBa2Cu3O7â^'x superconductor. Pramana - Journal of Physics, 1987, 29, L597-L601.	0.9	3
314	57Fe Mössbauer studies of U(Fe1â^'x Co x)2. Hyperfine Interactions, 1987, 34, 451-454.	0.2	0
315	Zero electrical resistance at 106 K in YBa2Cu3O7–x. Nature, 1987, 327, 604-605.	13.7	25
316	Possible role of Cu2+–Cu4+ pairs in the superconductivity of YBa2Cu3O7–x from electron spin resonance observations. Nature, 1987, 330, 49-51.	13.7	53
317	HighTcSuperconductivity in La1.8M0.2CuO4(M=Ca, Sr, Ba) and (Y1-xBax)2CuO4. Japanese Journal of Applied Physics, 1987, 26, 1085.	0.8	0
318	Some anomalous aspects of resistivity behavior in dilute chromium alloy systems. Journal of Applied Physics, 1985, 57, 3223-3225.	1.1	3
319	Electrical resistivity and the magnetic phase transitions of CrMn alloys. Journal of Physics F: Metal Physics, 1984, 14, 923-929.	1.6	15
320	Electrical Resistivity Studies on the Heusler Alloys Co2T1â^'xAl1+x (T = Ti or Zr). Physica Status Solidi A, 1984, 85, K89-K92.	1.7	7
321	Effect of small additions of vanadium on the electrical resistivity of Cr-0.5 at% Ir. Journal of Magnetism and Magnetic Materials, 1984, 46, 207-211.	1.0	4
322	On the electrical resistivity and néel temperature of dilute Cr-Ir alloys. Journal of the Less Common Metals, 1983, 91, 327-331.	0.9	13
323	Electrical resistivity of beta CoxGa1-x. Journal of Physics F: Metal Physics, 1983, 13, 659-664.	1.6	6
324	Smectic C-Nematic Transition in the Mixtures 5 _x 6 _{1-x} BABA. Molecular Crystals and Liquid Crystals, 1983, 98, 83-89.	0.9	0

#	Article	IF	CITATIONS
325	Electroflotation of colloids without surfactants. Journal of Colloid and Interface Science, 1982, 89, 54-60.	5.0	12
326	Evidence of bilayer structure in collodi flotation in iron hyrdroxide using sodium lauryl sulfate. Journal of Colloid and Interface Science, 1980, 78, 565-566.	5.0	0
327	Mössbauer and X-ray studies of Fe1.67Ge. Physica Status Solidi A, 1978, 49, K91-K95.	1.7	7
328	Bimetallic Magnets: Present and Perspectives. , 0, , 1-40.		0
329	Molecular Spintronics. Solid State Phenomena, 0, 189, 95-127.	0.3	1