List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222687/publications.pdf Version: 2024-02-01

SIMING YOU

#	Article	IF	CITATIONS
1	Microbial degradation of dyes: An overview. Bioresource Technology, 2020, 314, 123728.	9.6	306
2	Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 2021, 149, 106367.	10.0	276
3	A critical review on sustainable biochar system through gasification: Energy and environmental applications. Bioresource Technology, 2017, 246, 242-253.	9.6	263
4	Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 2020, 119, 109582.	16.4	212
5	Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy, 2018, 209, 43-55.	10.1	146
6	Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 2022, 256, 111755.	6.7	146
7	Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes. Bioresource Technology, 2016, 218, 595-605.	9.6	105
8	Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresource Technology, 2021, 320, 124278.	9.6	105
9	Mathematical Models for the van der Waals Force and Capillary Force between a Rough Particle and Surface. Langmuir, 2013, 29, 9104-9117.	3.5	83
10	A critical review on the principles, applications, and challenges of waste-to-hydrogen technologies. Renewable and Sustainable Energy Reviews, 2020, 134, 110365.	16.4	83
11	Machine learning methods for modelling the gasification and pyrolysis of biomass and waste. Renewable and Sustainable Energy Reviews, 2022, 155, 111902.	16.4	80
12	Are microplastics destabilizing the global network of terrestrial and aquatic ecosystem services?. Environmental Research, 2021, 198, 111243.	7.5	77
13	Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis. Energy, 2017, 139, 732-742.	8.8	76
14	On the association between outdoor PM2.5 concentration and the seasonality of tuberculosis for Beijing and Hong Kong. Environmental Pollution, 2016, 218, 1170-1179.	7.5	75
15	On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities. Applied Energy, 2018, 228, 1136-1146.	10.1	65
16	Towards practical application of gasification: a critical review from syngas and biochar perspectives. Critical Reviews in Environmental Science and Technology, 2018, 48, 1165-1213.	12.8	64
17	Concentrated solar thermochemical gasification of biomass: Principles, applications, and development. Renewable and Sustainable Energy Reviews, 2021, 150, 111484.	16.4	64
18	Techno-economic and greenhouse gas savings assessment of decentralized biomass gasification for electrifying the rural areas of Indonesia. Applied Energy, 2017, 208, 495-510.	10.1	61

#	Article	IF	CITATIONS
19	Optimal design of negative emission hybrid renewable energy systems with biochar production. Applied Energy, 2019, 243, 233-249.	10.1	60
20	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	9.6	60
21	Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 2022, 811, 152357.	8.0	60
22	Hydrometallurgical processes for heavy metals recovery from industrial sludges. Critical Reviews in Environmental Science and Technology, 2022, 52, 1022-1062.	12.8	57
23	Life cycle assessment of a sewage sludge and woody biomass co-gasification system. Energy, 2017, 137, 369-376.	8.8	52
24	Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Bioresource Technology, 2021, 319, 124213.	9.6	52
25	Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere, 2022, 293, 133474.	8.2	47
26	Techno-economic analysis of geopolymer production from the coal fly ash with high iron oxide and calcium oxide contents. Journal of Hazardous Materials, 2019, 361, 237-244.	12.4	46
27	Life cycle assessment and net present worth analysis of a community-based food waste treatment system. Bioresource Technology, 2020, 305, 123076.	9.6	41
28	A comparison of PM exposure related to emission hotspots in a hot and humid urban environment: Concentrations, compositions, respiratory deposition, and potential health risks. Science of the Total Environment, 2017, 599-600, 464-473.	8.0	38
29	Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility. Energy, 2019, 181, 455-467.	8.8	31
30	Multifunctional superhydrophobic self-cleaning cotton fabrics with oil-water separation and dye degradation via thiol-ene click reaction. Separation and Purification Technology, 2022, 282, 120123.	7.9	31
31	Life cycle assessment of biodiesel production from rapeseed oil: Influence of process parameters and scale. Bioresource Technology, 2022, 360, 127532.	9.6	29
32	Life cycle assessment of bio-based levoglucosan production from cotton straw through fast pyrolysis. Bioresource Technology, 2020, 307, 123179.	9.6	27
33	Experimental investigation and modelling of human-walking-induced particle resuspension. Indoor and Built Environment, 2015, 24, 564-576.	2.8	26
34	Energy, environmental, economic and social equity (4E) pressures of COVID-19 vaccination mismanagement: A global perspective. Energy, 2021, 235, 121315.	8.8	26
35	Energy, economic, and environmental impacts of sustainable biochar systems in rural China. Critical Reviews in Environmental Science and Technology, 2022, 52, 1063-1091.	12.8	25
36	Variation of household electricity consumption and potential impact of outdoor PM2.5 concentration: A comparison between Singapore and Shanghai. Applied Energy, 2017, 188, 475-484.	10.1	23

#	Article	IF	CITATIONS
37	Co-gasification of digestate and lignite in a downdraft fixed bed gasifier: Effect of temperature. Energy Conversion and Management, 2020, 213, 112798.	9.2	23
38	Modeling and Experiments of the Adhesion Force Distribution between Particles and a Surface. Langmuir, 2014, 30, 6808-6818.	3.5	22
39	Economic and environmental assessment of organic waste to biomethane conversion. Bioresource Technology, 2022, 345, 126500.	9.6	22
40	Process optimization of biomass gasification with a Monte Carlo approach and random forest algorithm. Energy Conversion and Management, 2022, 264, 115734.	9.2	22
41	A two-stage multi-criteria analysis method for planning renewable energy use and carbon saving. Energy, 2020, 199, 117475.	8.8	21
42	A comprehensive artificial neural network model for gasification process prediction. Applied Energy, 2022, 320, 119289.	10.1	21
43	Particulate emission from the gasification and pyrolysis of biomass: Concentration, size distributions, respiratory deposition-based control measure evaluation. Environmental Pollution, 2018, 242, 1108-1118.	7.5	18
44	Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. Environmental Research, 2022, 209, 112793.	7.5	18
45	Nanoneedle-Assembled Copper/Cobalt sulfides on nickel foam as an enhanced 3D hierarchical catalyst to activate monopersulfate for Rhodamine b degradation. Journal of Colloid and Interface Science, 2022, 613, 168-181.	9.4	16
46	Dynamic Carbon-Neutrality Assessment Needed to Tackle the Impacts of Global Crises. Environmental Science & Technology, 2022, 56, 9851-9853.	10.0	15
47	COVID-19: Resource recovery from plastic waste against plastic pollution. Cogent Environmental Science, 2020, 6, .	1.6	14
48	Enhanced degradation of ultra-violet stabilizer Bis(4-hydroxy)benzophenone using oxone catalyzed by hexagonal nanoplate-assembled CoS 3-dimensional cluster. Chemosphere, 2021, 288, 132427.	8.2	11
49	Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in Glasgow. International Journal of Hydrogen Energy, 2022, 47, 13532-13551.	7.1	11
50	Particle concentration dynamics in the ventilation duct after an artificial release: For countering potential bioterrorist attack. Journal of Hazardous Materials, 2014, 267, 183-193.	12.4	10
51	Economic analysis of the routes for fulfilment of net-zero energy buildings (NZEBs) in the UK. Energy Procedia, 2019, 158, 3541-3546.	1.8	8
52	Green strategies for sustainable packaging. Science, 2021, 372, 802-802.	12.6	7
53	Statistical Analysis of Fine Particle Resuspension from Rough Surfaces by Turbulent Flows. Aerosol and Air Quality Research, 2017, 17, 843-856.	2.1	6
54	A New Turbulent-Burst-Based Model for Particle Resuspension from Rough Surfaces in Turbulent Flow. Aerosol Science and Technology, 2014, 48, 1031-1042.	3.1	5

#	Article	IF	CITATIONS
55	Toward Understanding Drug Release From Biodegradable Polymer Microspheres of Different Erosion Kinetics Modes. Journal of Pharmaceutical Sciences, 2016, 105, 1934-1946.	3.3	5
56	Enhanced Catalytic Soot Oxidation by Ce-Based MOF-Derived Ceria Nano-Bar with Promoted Oxygen Vacancy. Catalysts, 2021, 11, 1128.	3.5	4
57	On the Carbon Abatement Potential and Economic Viability of Biochar Production Systems. , 2019, , 385-408.		3
58	A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension. Risk Analysis, 2015, 35, 1488-1502.	2.7	2
59	The waste challenge. , 2022, , 1-8.		1
60	Waste-to-energy technologies for sustainability: life- cycle assessment and economic analysis. , 2022, , 599-612.		0
61	Waste-to-biohydrogen. , 2022, , 47-75.		0
62	System optimization. , 2022, , 213-223.		0
63	System design. , 2022, , 161-187.		0
64	Waste-to-energy. , 2022, , 21-45.		0
65	Waste-to-biochar. , 2022, , 137-160.		0
66	Perspectives of future development. , 2022, , 225-230.		0