Yihui Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222677/publications.pdf Version: 2024-02-01

Ушни МЛн

#	Article	IF	CITATIONS
1	Acetone-assisted precursor engineering enables low-temperature fabrication of CsPbI2Br perovskite for efficient solar cells. Journal of Power Sources, 2021, 482, 228965.	4.0	31
2	Defect mitigation using <scp>d</scp> -penicillamine for efficient methylammonium-free perovskite solar cells with high operational stability. Chemical Science, 2021, 12, 2050-2059.	3.7	88
3	Colloidal CsCu5S3 nanocrystals as an interlayer in high-performance perovskite solar cells with an efficiency of 22.29%. Chemical Engineering Journal, 2021, 406, 126855.	6.6	25
4	Efficient post-treatment of CsPbBr3 film with enhanced photovoltaic performance. Journal of Alloys and Compounds, 2021, 872, 159601.	2.8	3
5	Reducing carrier transport barrier in anode interface enables efficient and stable inverted mesoscopic methylammonium-free perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131499.	6.6	17
6	Interfacial Contact Passivation for Efficient and Stable Cesium-Formamidinium Double-Cation Lead Halide Perovskite Solar Cells. IScience, 2020, 23, 100762.	1.9	37
7	Multilayer Cascade Charge Transport Layer for Highâ€Performance Inverted Mesoscopic Allâ€Inorganic and Hybrid Wideâ€Bandgap Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000344.	3.1	23
8	Crystallization tailoring of cesium/formamidinium double-cation perovskite for efficient and highly stable solar cells. Journal of Energy Chemistry, 2020, 48, 217-225.	7.1	45
9	Highâ€Efficiency Perovskite Solar Cells Enabled by Anatase TiO ₂ Nanopyramid Arrays with an Oriented Electric Field. Angewandte Chemie - International Edition, 2020, 59, 11969-11976.	7.2	76
10	Highâ€Efficiency Perovskite Solar Cells Enabled by Anatase TiO ₂ Nanopyramid Arrays with an Oriented Electric Field. Angewandte Chemie, 2020, 132, 12067-12074.	1.6	15
11	Surface polarity engineering of ZnO layer for improved photoluminescence of CsPbBr3 quantum dot films. Chemical Physics Letters, 2020, 750, 137454.	1.2	5
12	Solutionâ€Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Advanced Functional Materials, 2019, 29, 1807661.	7.8	149
13	Thermally stable methylammonium-free inverted perovskite solar cells with Zn2+ doped CuGaO2 as efficient mesoporous hole-transporting layer. Nano Energy, 2019, 61, 148-157.	8.2	90
14	Synthesis, Characterization, and Photodetector Application of Alkali Metal Bismuth Chalcogenide Nanocrystals. ACS Applied Energy Materials, 2019, 2, 182-186.	2.5	21
15	Heterojunction Engineering for High Efficiency Cesium Formamidinium Double ation Lead Halide Perovskite Solar Cells. ChemSusChem, 2018, 11, 808-808.	3.6	2
16	High performance perovskite solar cells using TiO2 nanospindles as ultrathin mesoporous layer. Journal of Energy Chemistry, 2018, 27, 951-956.	7.1	29
17	Heterojunction Engineering for High Efficiency Cesium Formamidinium Double ation Lead Halide Perovskite Solar Cells. ChemSusChem, 2018, 11, 837-842.	3.6	61
18	Nanocrystals of halide perovskite: Synthesis, properties, and applications. Journal of Energy Chemistry, 2018, 27, 622-636.	7.1	43

Үіниі Wu

#	Article	IF	CITATIONS
19	Design of an Inorganic Mesoporous Holeâ€Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials, 2018, 30, e1805660.	11.1	179
20	Facile Fabrication of SnO ₂ Nanorod Arrays Films as Electron Transporting Layer for Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800133.	3.1	41
21	Bismuth-based ternary nanowires as efficient electrocatalysts for dye sensitized solar cells. Chemical Communications, 2017, 53, 5445-5448.	2.2	20
22	Annealing-free perovskite films based on solvent engineering for efficient solar cells. Journal of Materials Chemistry C, 2017, 5, 842-847.	2.7	63
23	Air-stable layered bismuth-based perovskite-like materials: Structures and semiconductor properties. Physica B: Condensed Matter, 2017, 526, 136-142.	1.3	26
24	Long-term stability of organic–inorganic hybrid perovskite solar cells with high efficiency under high humidity conditions. Journal of Materials Chemistry A, 2017, 5, 1374-1379.	5.2	75
25	Innenrücktitelbild: A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye‧ensitized Solar Cells (Angew. Chem. 23/2016). Angewandte Chemie, 2016, 128, 6905-6905.	1.6	0
26	CuFeS ₂ colloidal nanocrystals as an efficient electrocatalyst for dye sensitized solar cells. Chemical Communications, 2016, 52, 11488-11491.	2.2	45
27	A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dyeâ€ S ensitized Solar Cells. Angewandte Chemie, 2016, 128, 6820-6824.	1.6	35
28	A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 6708-6712.	7.2	236
29	Monodisperse AgSbS ₂ Nanocrystals: Sizeâ€Control Strategy, Largeâ€5cale Synthesis, and Photoelectrochemistry. Chemistry - A European Journal, 2015, 21, 11143-11151.	1.7	31
30	Well-defined BiOCl colloidal ultrathin nanosheets: synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. Chemical Science, 2015, 6, 1873-1878.	3.7	196
31	Shape and composition control of Bi ₁₉ S ₂₇ (Br _{3â^'x} ,I _x) alloyed nanowires: the role of metal ions. Chemical Science, 2015, 6, 4615-4622.	3.7	24
32	Controllable synthesis of silicon nano-particles using a one-step PECVD-ionic liquid strategy. Journal of Materials Chemistry A, 2015, 3, 10233-10237.	5.2	0
33	Nitrogen-doped carbon nanotubes with metal nanoparticles as counter electrode materials for dye-sensitized solar cells. Chemical Communications, 2015, 51, 8146-8149.	2.2	61
34	Enhancing photoresponsivity of self-powered UV photodetectors based on electrochemically reduced TiO ₂ nanorods. RSC Advances, 2015, 5, 95939-95942.	1.7	7
35	Composition-tunable Cu2(Ge1â^'x,Snx)(S3â^'y,Sey) colloidal nanocrystals: synthesis and characterization. Chemical Communications, 2014, 50, 12738-12741.	2.2	10
36	Enhanced adsorption desulfurization performance over hierarchically structured zeolite Y. Fuel Processing Technology, 2014, 128, 176-182.	3.7	104

Үіниі Wu

#	Article	IF	CITATIONS
37	Effect of Si/Al ratio on mesopore formation for zeolite beta via NaOH treatment and the catalytic performance in α-pinene isomerization and benzoylation of naphthalene. Microporous and Mesoporous Materials, 2013, 173, 129-138.	2.2	67
38	Enhanced catalytic isomerization of α-pinene over mesoporous zeolite beta of low Si/Al ratio by NaOH treatment. Microporous and Mesoporous Materials, 2012, 162, 168-174.	2.2	76
39	Isomerization of α-Pinene over Immobilized AlCl3 Catalysts. Chinese Journal of Catalysis, 2011, 32, 1138-1142.	6.9	24