
Sarah Woods

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8222261/publications.pdf Version: 2024-02-01

ΟΛΟΛΗ ΜΙΟΟΟS

#	Article	IF	CITATIONS
1	Coalescence and Secondary Ice Development in Cumulus Congestus Clouds. Journals of the Atmospheric Sciences, 2022, , .	0.6	1
2	The Balance Between Heterogeneous and Homogeneous Nucleation of Ice Clouds Using CAM5/CARMA. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	5
3	Analysis of aerosol–cloud interactions and their implications for precipitation formation using aircraft observations over the United Arab Emirates. Atmospheric Chemistry and Physics, 2021, 21, 12543-12560.	1.9	14
4	Persisting volcanic ash particles impact stratospheric SO2 lifetime and aerosol optical properties. Nature Communications, 2020, 11, 4526.	5.8	51
5	Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC 4 RS Case Study. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031957.	1.2	5
6	A microphysics guide to cirrus $\hat{a} \in$ Part 2: Climatologies of clouds and humidity from observations. Atmospheric Chemistry and Physics, 2020, 20, 12569-12608.	1.9	80
7	A Classification of Ice Crystal Habits Using Combined Lidar and Scanning Polarimeter Observations during the SEAC4RS Campaign. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2185-2196.	0.5	2
8	A Review of Ice Particle Shapes in Cirrus formed In Situ and in Anvils. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10049-10090.	1.2	54
9	An Evaluation of the Representation of Tropical Tropopause Cirrus in the CESM/CARMA Model Using Satellite and Aircraft Observations. Journal of Geophysical Research D: Atmospheres, 2019, 124, 8659-8687.	1.2	4
10	Ash Particles Detected in the Tropical Lower Stratosphere. Geophysical Research Letters, 2018, 45, 11,483.	1.5	4
11	Heterogeneous Ice Nucleation in the Tropical Tropopause Layer. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12,210.	1.2	16
12	Microphysical Properties of Tropical Tropopause Layer Cirrus. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6053-6069.	1.2	35
13	The NASA Airborne Tropical Tropopause Experiment: High-Altitude Aircraft Measurements in the Tropical Western Pacific. Bulletin of the American Meteorological Society, 2017, 98, 129-143.	1.7	79
14	WRF nested largeâ€eddy simulations of deep convection during SEAC ⁴ RS. Journal of Geophysical Research D: Atmospheres, 2017, 122, 3953-3974.	1.2	20
15	Aircraft Observations of Cumulus Microphysics Ranging from the Tropics to Midlatitudes: Implications for a "New―Secondary Ice Process. Journals of the Atmospheric Sciences, 2017, 74, 2899-2920.	0.6	49
16	Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6094-6107.	1.2	20
17	lce water contentâ€extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4494-4507.	1.2	23
18	On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance. Journals of the Atmospheric Sciences, 2016, 73, 2445-2464.	0.6	28

SARAH WOODS

#	Article	IF	CITATIONS
19	Observational constraints on the efficiency of dehydration mechanisms in the tropical tropopause layer. Geophysical Research Letters, 2016, 43, 2912-2918.	1.5	27
20	Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7430-7460.	1.2	28
21	Ubiquitous influence of waves on tropical high cirrus clouds. Geophysical Research Letters, 2016, 43, 5895-5901.	1.5	42
22	Highâ€frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus. Geophysical Research Letters, 2016, 43, 6629-6635.	1.5	39
23	Gravity waves amplify upper tropospheric dehydration by clouds. Earth and Space Science, 2015, 2, 485-500.	1.1	30
24	The Microphysics of Ice and Precipitation Development in Tropical Cumulus Clouds. Journals of the Atmospheric Sciences, 2015, 72, 2429-2445.	0.6	156
25	A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean. Methods in Oceanography, 2014, 11, 39-58.	1.5	15
26	Influence of the oceanic cool skin layer on global air–sea CO2 flux estimates. Remote Sensing of Environment, 2014, 145, 15-24.	4.6	7
27	Measurements of turbulent dissipation during the Bahamas Optical Turbulence Experiment. Proceedings of SPIE, 2013, , .	0.8	Ο
28	Short surface waves in the Canadian Arctic in 2007 and 2008. Journal of Geophysical Research: Oceans, 2013, 118, 3712-3722.	1.0	3
29	Impacts of underwater turbulence on acoustical and optical signals and their linkage. Optics Express, 2013, 21, 4367.	1.7	41
30	Restoration of turbulence degraded underwater images. Optical Engineering, 2012, 51, 1.	0.5	23
31	Optical turbulence on underwater image degradation in natural environments. Applied Optics, 2012, 51, 2678.	0.9	96
32	Bahamas Optical Turbulence Exercise (BOTEX): preliminary results. , 2012, , .		4
33	Impacts of optical turbulence on underwater imaging. Proceedings of SPIE, 2011, , .	0.8	10
34	Measurements of turbulence for quantifying the impact of turbulence on underwater imaging. , 2011, ,		1
35	Quantifying turbulence microstructure for improvement of underwater imaging. Proceedings of SPIE, 2011, , .	0.8	2
36	Assessing EO image degradation from underwater optical turbulence in natural waters. Proceedings of SPIE, 2011, , .	0.8	1

#	Article	IF	CITATIONS
37	Multi-frame underwater image restoration. Proceedings of SPIE, 2011, , .	0.8	0
38	Laboratory measurements of light beam depolarization on turbulent convective flow. Applied Optics, 2010, 49, 3545.	2.1	5