
Rosaria Meccariello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differential Expression of Kisspeptin System and Kisspeptin Receptor Trafficking during Spermatozoa Transit in the Epididymis. Genes, 2022, 13, 295.	2.4	9
2	Editorial: Endocrine-Disrupting Compounds in Plastics and Their Effects on Reproduction, Fertility, and Development. Frontiers in Toxicology, 2022, 4, 886628.	3.1	5
3	The Kisspeptin System in Male Reproduction. Endocrines, 2022, 3, 168-174.	1.0	6
4	Central and Local Modulators of Reproduction and Fertility: An Update. International Journal of Molecular Sciences, 2022, 23, 5285.	4.1	1
5	The Complex Interplay between Endocannabinoid System and the Estrogen System in Central Nervous System and Periphery. International Journal of Molecular Sciences, 2021, 22, 972.	4.1	25
6	Sirt1 Activity in the Brain: Simultaneous Effects on Energy Homeostasis and Reproduction. International Journal of Environmental Research and Public Health, 2021, 18, 1243.	2.6	25
7	Microplastics: A Threat for Male Fertility. International Journal of Environmental Research and Public Health, 2021, 18, 2392.	2.6	58
8	Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants, 2021, 10, 507.	5.1	41
9	Kisspeptin Receptor on the Sperm Surface Reflects Epididymal Maturation in the Dog. International Journal of Molecular Sciences, 2021, 22, 10120.	4.1	8
10	Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD+-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. International Journal of Molecular Sciences, 2021, 22, 9666.	4.1	11
11	Pleiotropic Outcomes of Glyphosate Exposure: From Organ Damage to Effects on Inflammation, Cancer, Reproduction and Development. International Journal of Molecular Sciences, 2021, 22, 12606.	4.1	22
12	Kisspeptins, new local modulators of male reproduction: A comparative overview. General and Comparative Endocrinology, 2020, 299, 113618.	1.8	17
13	ï‰-3 and ï‰-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients, 2020, 12, 2751.	4.1	111
14	The Epigenetics of the Endocannabinoid System. International Journal of Molecular Sciences, 2020, 21, 1113.	4.1	46
15	Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 2020, 254, 126819.	8.2	35
16	Endocannabinoid System in Health and Disease: Current Situation and Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 3549.	4.1	17
17	Minireview: The Epigenetic Modulation of KISS1 in Reproduction and Cancer. International Journal of Environmental Research and Public Health, 2019, 16, 2607.	2.6	14
18	Neuro-toxic and Reproductive Effects of BPA. Current Neuropharmacology, 2019, 17, 1109-1132.	2.9	141

ROSARIA MECCARIELLO

#	Article	IF	CITATIONS
19	A Calorie-Restricted Ketogenic Diet Reduces Cerebral Cortex Vascularization in Prepubertal Rats. Nutrients, 2019, 11, 2681.	4.1	3
20	BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 594-604.	1.2	29
21	A novel experimental approach for liver analysis in rats exposed to Bisphenol A by means of LC-mass spectrometry and infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 2019, 165, 207-212.	2.8	13
22	Chronic exposure to low dose of bisphenol A impacts on the first round of spermatogenesis via SIRT1 modulation. Scientific Reports, 2018, 8, 2961.	3.3	61
23	Introductory Chapter: Spermatozoa - Facts and Perspectives. , 2018, , .		0
24	Editorial: The Multiple Facets of Kisspeptin Activity in Biological Systems. Frontiers in Endocrinology, 2018, 9, 727.	3.5	11
25	MicroRNAs, Cancer and Diet: Facts and New Exciting Perspectives. Current Molecular Pharmacology, 2018, 11, 90-96.	1.5	26
26	Bisphenol A in Reproduction: Epigenetic Effects. Current Medicinal Chemistry, 2018, 25, 748-770.	2.4	117
27	Impact of Dietary Fats on Brain Functions. Current Neuropharmacology, 2018, 16, 1059-1085.	2.9	95
28	Placental Vascularization and Apoptosis in Rats Orally Exposed to Low Doses of Bisphenol A. Open Journal of Obstetrics and Gynecology, 2018, 08, 958-969.	0.2	2
29	Kisspeptin regulates steroidogenesis and spermiation in anuran amphibian. Reproduction, 2017, 154, 403-414.	2.6	26
30	Effects of Neuroendocrine CB1 Activity on Adult Leydig Cells. Frontiers in Endocrinology, 2016, 7, 47.	3.5	19
31	Anandamide acts via kisspeptin in the regulation of testicular activity of the frog, Pelophylax esculentus. Molecular and Cellular Endocrinology, 2016, 420, 75-84.	3.2	19
32	Kisspeptins, Estrogens and Male Fertility. Current Medicinal Chemistry, 2016, 23, 4070-4091.	2.4	47
33	Expression Analysis of <i>Gnrh1</i> and <i>Gnrh1</i> in Spermatogenic Cells of Rat. International Journal of Endocrinology, 2015, 2015, 1-8.	1.5	26
34	Kisspeptin drives germ cell progression in the anuran amphibian Pelophylax esculentus: A study carried out in ex vivo testes. General and Comparative Endocrinology, 2015, 211, 81-91.	1.8	32
35	Modulators of Hypothalamicââ,¬â€œPituitaryââ,¬â€œGonadal Axis for the Control of Spermatogenesis and Sperm Quality in Vertebrates. Frontiers in Endocrinology, 2014, 5, 135.	3.5	13
36	Endocannabinoids are Involved in Male Vertebrate Reproduction: Regulatory Mechanisms at Central and Gonadal Level. Frontiers in Endocrinology, 2014, 5, 54.	3.5	43

ROSARIA MECCARIELLO

#	Article	IF	CITATIONS
37	Endocannabinoids and Reproduction. International Journal of Endocrinology, 2014, 2014, 1-2.	1.5	11
38	Intra-Testicular Signals Regulate Germ Cell Progression and Production of Qualitatively Mature Spermatozoa in Vertebrates. Frontiers in Endocrinology, 2014, 5, 69.	3.5	51
39	Molecular Chaperones, Cochaperones, and Ubiquitination/Deubiquitination System: Involvement in the Production of High Quality Spermatozoa. BioMed Research International, 2014, 2014, 1-10.	1.9	30
40	Updates in Reproduction Coming from the Endocannabinoid System. International Journal of Endocrinology, 2014, 2014, 1-16.	1.5	56
41	Hypothalamus–pituitary axis: An obligatory target for endocannabinoids to inhibit steroidogenesis in frog testis. General and Comparative Endocrinology, 2014, 205, 88-93.	1.8	13
42	Kisspeptin Receptor, GPR54, as a Candidate for the Regulation of Testicular Activity in the Frog Rana esculenta1. Biology of Reproduction, 2013, 88, 73.	2.7	36
43	Endocannabinoids and Endovanilloids: A Possible Balance in the Regulation of the Testicular GnRH Signalling. International Journal of Endocrinology, 2013, 2013, 1-9.	1.5	8
44	Anandamide regulates the expression of GnRH1, GnRH2, and GnRH-Rs in frog testis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E475-E487.	3.5	31
45	The role of endocannabinoids in gonadal function and fertility along the evolutionary axis. Molecular and Cellular Endocrinology, 2012, 355, 1-14.	3.2	71
46	The contribution of lower vertebrate animal models in human reproduction research. General and Comparative Endocrinology, 2011, 171, 17-27.	1.8	37
47	Anandamide modulates the expression of GnRH-II and GnRHRs in frog, Rana esculenta, diencephalon. General and Comparative Endocrinology, 2011, 173, 389-395.	1.8	23
48	A Gradient of 2-Arachidonoylglycerol Regulates Mouse Epididymal Sperm Cell Start-Up1. Biology of Reproduction, 2010, 82, 451-458.	2.7	77
49	Cannabinoids and Reproduction: A Lasting and Intriguing History. Pharmaceuticals, 2010, 3, 3275-3323.	3.8	28
50	Cannabinoid Receptor 1 Influences Chromatin Remodeling in Mouse Spermatids by Affecting Content of Transition Protein 2 mRNA and Histone Displacement. Endocrinology, 2010, 151, 5017-5029.	2.8	85
51	Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target. PLoS ONE, 2009, 4, e7016.	2.5	73
52	Chapter 14 CB1 Activity in Male Reproduction: Mammalian and Nonmammalian Animal Models. Vitamins and Hormones, 2009, 81, 367-387.	1.7	29
53	Endocannabinoid System in First Trimester Placenta: Low FAAH and High CB1 Expression Characterize Spontaneous Miscarriage. Placenta, 2009, 30, 516-522.	1.5	87
54	Testicular Gonadotropinâ€releasing Hormone Activity, Progression of Spermatogenesis, and Sperm Transport in Vertebrates. Annals of the New York Academy of Sciences, 2009, 1163, 279-291.	3.8	34

#	Article	IF	CITATIONS
55	The Endocannabinoid System: An Ancient Signaling Involved in the Control of Male Fertility. Annals of the New York Academy of Sciences, 2009, 1163, 112-124.	3.8	38
56	Estrogen regulation of the male reproductive tract in the frog, Rana esculenta: A role in Fra-1 activation in peritubular myoid cells and in sperm release. General and Comparative Endocrinology, 2008, 155, 838-846.	1.8	25
57	The endocannabinoid system in vertebrate male reproduction: A comparative overview. Molecular and Cellular Endocrinology, 2008, 286, S24-S30.	3.2	47
58	Non-mammalian vertebrate models and the endocannabinoid system: Relationships with gonadotropin-releasing hormone. Molecular and Cellular Endocrinology, 2008, 286, S46-S51.	3.2	21
59	Expression of Type-1 Cannabinoid Receptor During Rat Postnatal Testicular Development: Possible Involvement in Adult Leydig Cell Differentiation1. Biology of Reproduction, 2008, 79, 758-765.	2.7	58
60	Interplay between the Endocannabinoid System and GnRH-I in the Forebrain of the Anuran Amphibian Rana esculenta. Endocrinology, 2008, 149, 2149-2158.	2.8	47
61	Cloning of type $\hat{a} \in f1$ cannabinoid receptor in Rana esculenta reveals differences between genomic sequence and cDNA. FEBS Journal, 2007, 274, 2909-2920.	4.7	19
62	UBPy/MSJ-1 system during male germ cell progression in the frog, Rana esculenta. General and Comparative Endocrinology, 2007, 153, 275-279.	1.8	6
63	Endocannabinoid control of sperm motility: The role of epididymus. General and Comparative Endocrinology, 2007, 153, 320-322.	1.8	74
64	Type-1 cannabinoid receptor expression in the frog,Rana esculenta, tissues: A possible involvement in the regulation of testicular activity. Molecular Reproduction and Development, 2006, 73, 551-558.	2.0	36
65	Endocannabinoid System in Frog and Rodent Testis: Type-1 Cannabinoid Receptor and Fatty Acid Amide Hydrolase Activity in Male Germ Cells1. Biology of Reproduction, 2006, 75, 82-89.	2.7	94
66	Fra-1 Activity in the Frog,Rana esculenta, Testis. Annals of the New York Academy of Sciences, 2005, 1040, 264-268.	3.8	6
67	Fra1 Activity in the Frog, Rana esculenta, Testis: A New Potential Role in Sperm Transport1. Biology of Reproduction, 2005, 72, 1101-1108.	2.7	14
68	Detection ofmsj-1 gene expression in the frog,Rana esculenta testis, brain, and spinal cord. Molecular Reproduction and Development, 2004, 68, 149-158.	2.0	7
69	Intratesticular signals for progression of germ cell stages in vertebrates. General and Comparative Endocrinology, 2003, 134, 220-228.	1.8	17
70	Cytoplasmic Versus Nuclear Localization of Fos-Related Proteins in the Frog, Rana esculenta, Testis: In Vivo and Direct In Vitro Effect of a Gonadotropin-Releasing Hormone Agonist1. Biology of Reproduction, 2003, 68, 954-960.	2.7	24
71	Cytoplasmic and Nuclear Fos Protein Forms Regulate Resumption of Spermatogenesis in the Frog, <i>Rana esculenta</i> . Endocrinology, 2002, 143, 163-170.	2.8	47
72	Mouse Sperm Cell-Specific DnaJ First Homologue: An Evolutionarily Conserved Protein for Spermiogenesis1. Biology of Reproduction, 2002, 66, 1328-1335.	2.7	24

#	Article	IF	CITATIONS
73	Evolutionary Aspects of Cellular Communication in the Vertebrate Hypothalamo–Hypophysio–Gonadal Axis. International Review of Cytology, 2002, 218, 69-143e.	6.2	90
74	Cytoplasmic and Nuclear Fos Protein Forms Regulate Resumption of Spermatogenesis in the Frog, Rana esculenta. Endocrinology, 2002, 143, 163-170.	2.8	22
75	Effects of multiple injections of ethane 1,2-dimethane sulphonate (EDS) on the frog,Rana esculenta, testicular activity. The Journal of Experimental Zoology, 2000, 287, 384-393.	1.4	10
76	c-fos Activity in Rana esculenta Testis: Seasonal and Estradiol-Induced Changes*. Endocrinology, 1999, 140, 3238-3244.	2.8	50
77	c-fos Activity in Rana esculenta Testis: Seasonal and Estradiol-Induced Changes. Endocrinology, 1999, 140, 3238-3244.	2.8	16
78	Endocannabinoids and Kisspeptins: Two Modulators in Fight for the Regulation of GnRH Activity. , 0, , .		5
79	The Endocannabinoid System in Human Physiology. , 0, , .		1
80	KISS1R and ANKRD31 Cooperate to Enhance Leydig Cell Gene Expression via the Cytoskeletal-Nucleoskeletal Pathway. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1