Catherine Batiot Dupeyrat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low Temperature Catalytic Oxidation of Ethanol Using Ozone over Manganese Oxide-Based Catalysts in Powdered and Monolithic Forms. Catalysts, 2022, 12, 172.	3.5	8
2	Low-Temperature O3 Decomposition over Pd-TiO2 Hybrid Catalysts. Catalysts, 2022, 12, 448.	3.5	6
3	Unexpected role of NOx during catalytic ozone abatement at low temperature. Catalysis Communications, 2021, 148, 106163.	3.3	8
4	Regeneration of an Aged Hydrodesulfurization Catalyst by Non-Thermal Plasma: Characterization of Refractory Coke Molecules. Catalysts, 2021, 11, 1153.	3.5	0
5	Regeneration of an aged hydrodesulfurization catalyst: Conventional thermal vs non-thermal plasma technology. Fuel, 2021, 306, 121674.	6.4	12
6	Highly Active and Carbon-Resistant Nickel Single-Atom Catalysts for Methane Dry Reforming. Catalysts, 2020, 10, 630.	3.5	42
7	Elimination of Coke in an Aged Hydrotreating Catalyst via a Non-Thermal Plasma Process: Comparison with a Coked Zeolite. Catalysts, 2019, 9, 783.	3.5	6
8	Mechanism of glycerol dehydration and dehydrogenation: an experimental and computational correlation. DYNA (Colombia), 2019, 86, 126-135.	0.4	4
9	Regeneration of a Coked Zeolite via Nonthermal Plasma Process: A Parametric Study. Plasma Chemistry and Plasma Processing, 2019, 39, 929-936.	2.4	13
10	Mechanism and Kinetic of Coke Oxidation by Nonthermal Plasma in Fixed-Bed Dielectric Barrier Reactor. Journal of Physical Chemistry C, 2019, 123, 9168-9175.	3.1	15
11	Impact of the Framework Type on the Regeneration of Coked Zeolites by Non-Thermal Plasma in a Fixed Bed Dielectric Barrier Reactor. Catalysts, 2019, 9, 985.	3.5	8
12	Methanol oxidation in dry and humid air by dielectric barrier discharge plasma combined with MnO2–CuO based catalysts. Chemical Engineering Journal, 2018, 347, 944-952.	12.7	28
13	Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts. Applied Catalysis A: General, 2018, 557, 135-144.	4.3	39
14	Autothermal reforming of model purified biogas using an extruded honeycomb monolith: A new catalyst based on nickel incorporated illite clay promoted with MgO. Journal of Cleaner Production, 2018, 171, 377-389.	9.3	22
15	Catalyst assisted by non-thermal plasma in dry reforming of methane at low temperature. Catalysis Today, 2018, 299, 263-271.	4.4	48
16	Development of nickel supported La and Ce-natural illite clay for autothermal dry reforming of methane: Toward a better resistance to deactivation. Applied Catalysis B: Environmental, 2017, 205, 519-531.	20.2	50
17	New routes for complete regeneration of coked zeolite. Applied Catalysis B: Environmental, 2017, 219, 82-91.	20.2	50
18	Activation of CO2 on Ni/La2O3: non-isothermal kinetic study on the basis of thermogravimetric studies. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 179-193.	1.7	9

CATHERINE BATIOT DUPEYRAT

#	Article	IF	CITATIONS
19	Synthesis of carbon nano-chains from glycerol-ethanol decomposition over Ni-Fe alloy catalyst. Diamond and Related Materials, 2016, 70, 105-113.	3.9	15
20	Non thermal plasma assisted catalysis of methanol oxidation on Mn, Ce and Cu oxides supported on γ-Al2O3. Chemical Engineering Journal, 2016, 304, 563-572.	12.7	46
21	Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane. Fuel, 2016, 178, 139-147.	6.4	39
22	Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition. Water Science and Technology, 2015, 72, 1404-1410.	2.5	10
23	Decomposition of ethanol into H2-rich gas and carbon nanotubes over Ni, Co and Fe supported on SBA-15 and Aerosil. Applied Catalysis A: General, 2015, 504, 642-653.	4.3	26
24	Carbon dioxide dissociation to carbon monoxide by non-thermal plasma. Journal of CO2 Utilization, 2015, 12, 54-61.	6.8	50
25	Chemical and morphological characterization of multi-walled-carbon nanotubes synthesized by carbon deposition from an ethanol–glycerol blend. Diamond and Related Materials, 2014, 50, 38-48.	3.9	36
26	Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chemical Reviews, 2014, 114, 10292-10368.	47.7	685
27	Efficient and Robust Reforming Catalyst in Severe Reaction Conditions by Nanoprecursor Reduction in Confined Space. ChemSusChem, 2014, 7, 631-637.	6.8	27
28	Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Applied Catalysis B: Environmental, 2014, 160-161, 606-613.	20.2	56
29	Gas phase glycerol conversion over lanthanum based catalysts: LaNiO3 and La2O3. Applied Catalysis A: General, 2013, 467, 315-324.	4.3	25
30	Intershell spacing changes in MWCNT induced by metal–CNT interactions. Micron, 2013, 44, 463-467.	2.2	15
31	Simultaneous production of hydrogen and carbon nanostructured materials from ethanol over LaNiO3 and LaFeO3 perovskites as catalyst precursors. Applied Catalysis A: General, 2013, 450, 73-79.	4.3	24
32	Synergetic effect by coupling photocatalysis with plasma for low VOCs concentration removal from air. Applied Catalysis B: Environmental, 2012, 125, 432-438.	20.2	83
33	Carbon Dioxide Reforming of Methane Using a Dielectric Barrier Discharge Reactor: Effect of Helium Dilution and Kinetic Model. Plasma Chemistry and Plasma Processing, 2011, 31, 315-325.	2.4	74
34	Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons—Influence of La2O3/γ-Al2O3 catalyst. Catalysis Today, 2011, 171, 67-71.	4.4	68
35	Synthesis of MWCNTs and hydrogen from ethanol catalytic decomposition over a Ni/La2O3 catalyst produced by the reduction of LaNiO3. Applied Catalysis A: General, 2011, 397, 73-81.	4.3	44
36	Decomposition of ethanol over Ni/Al2O3 catalysts to produce hydrogen and carbon nanostructured materials. Journal of Molecular Catalysis A, 2011, 340, 15-23.	4.8	33

CATHERINE BATIOT DUPEYRAT

#	Article	IF	CITATIONS
37	Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous and Mesoporous Materials, 2011, 140, 69-80.	4.4	72
38	Production of hydrogen and MWCNTs by methane decomposition over catalysts originated from LaNiO3 perovskite. Catalysis Today, 2010, 149, 365-371.	4.4	55
39	CO2 reforming of CH4 over Ni-containing phyllosilicates as catalyst precursors. Catalysis Today, 2010, 157, 397-403.	4.4	69
40	Use of a non-thermal plasma for the production of synthesis gas from biogas. Applied Catalysis A: General, 2009, 353, 228-235.	4.3	124
41	Influence of Pr and Ce in dry methane reforming catalysts produced from La1â^'xAxNiO3â^´î´ perovskites. Applied Catalysis A: General, 2009, 369, 97-103.	4.3	141
42	Severe Deactivation of a LaNiO3Perovskite-Type Catalyst Precursor with H2S during Methane Dry Reforming. Energy & Fuels, 2009, 23, 4883-4886.	5.1	18
43	Influence of the Plasma Power Supply Nature on the Plasma–Catalyst Synergism for the Carbon Dioxide Reforming of Methane. IEEE Transactions on Plasma Science, 2009, 37, 2342-2346.	1.3	27
44	Dry reforming of methane over nickel catalysts supported on the cuspidine-like phase Nd4Ga2O9. Catalysis Today, 2008, 133-135, 231-238.	4.4	0
45	Carbon dioxide reforming of methane over La2NiO4 as catalyst precursor—Characterization of carbon deposition. Catalysis Today, 2008, 133-135, 200-209.	4.4	89
46	Dry reforming of methane over LaNi1â~'yByO3±δ (B=Mg, Co) perovskites used as catalyst precursor. Applied Catalysis A: General, 2008, 334, 251-258.	4.3	204
47	Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La ₂ O ₃ Produced from LaNiO ₃ Perovskite. Industrial & Engineering Chemistry Research, 2008, 47, 9272-9278.	3.7	112
48	CO2 reforming of CH4 over La–Ni based perovskite precursors. Applied Catalysis A: General, 2006, 311, 164-171.	4.3	204
49	CO2 reforming of methane over LaNiO3 as precursor material. Catalysis Today, 2005, 107-108, 474-480.	4.4	77
50	Dry reforming of methane over Ni perovskite type oxides. Catalysis Today, 2005, 107-108, 785-791.	4.4	191
51	Pulse study of CO2 reforming of methane over LaNiO3. Applied Catalysis A: General, 2003, 248, 143-151.	4.3	114
52	Methane catalytic combustion on La-based perovskite catalysts. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 49-55.	0.1	8
53	Methane catalytic combustion on La-based perovskite type catalysts in high temperature isothermal conditions. Applied Catalysis A: General, 2001, 206, 205-215.	4.3	33