
Tatiana V Magdesieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221628/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Diarylamines with the Neighboring Pyridyl Group: Synthesis and Modulation of the Amine Functionality via Intramolecular H-Bonding. Synthesis, 2022, 54, 1601-1612.	1.2	1
2	Coreyâ€Ð¡haykovsky cyclopropanation of dehydroalanine in the Ni(II) coordination environment: Electrochemical vs. chemical activation. Electrochimica Acta, 2022, 409, 139980.	2.6	7
3	Pyridine ontaining Donorâ€Acceptor Diarylnitroxides: Noncovalent Stabilization of the Redox States. ChemPlusChem, 2022, 87, e202100508.	1.3	3
4	Ni(II) Schiffâ€Base Complexes as Chiral Electroauxiliaries and Methodological Platform for Stereoselective Electrochemical Functionalization of Amino Acids. Chemical Record, 2021, 21, 2178-2192.	2.9	13
5	[1,2]â€5hift in Chiral Ni(II) Schiffâ€Base Derivatives: Conversion of α―Thiobenzylated Amino Acid into the Cysteine Derivative. ChemistrySelect, 2021, 6, 3313-3317.	0.7	2
6	Stereoselective arylthiolation of dehydroalanine in the Nill coordination environment: the stereoinductor of choice. Mendeleev Communications, 2021, 31, 337-340.	0.6	0
7	Stereoselective arylthiolation of dehydroalanine in the Nill coordination environment: the stereoinductor of choice. Mendeleev Communications, 2021, 31, 337-340.	0.6	8
8	Diastereomeric Ni(II) Schiff-base cysteine derivatives: Non-covalent interactions and redox activity. Electrochimica Acta, 2021, 388, 138537.	2.6	3
9	Redoxâ€Amphoteric 4,4'â€Dicyclopropyldiphenylnitroxyl Radical: Unexpectedly High Stability. ChemistrySelect, 2021, 6, 9653-9656.	0.7	6
10	Regio―and Chemoselectivity of Oxidative Conversion of Diarylamines to N,N'â€Diaryldihydrophenazines and N,N'â€Diarylbenzidines: DFT and Experimental Study. ChemistrySelect, 2021, 6, 9769-9775.	0.7	1
11	Frontispiece: Chameleonic Behavior of the αâ€Methylcyclopropyl Group and Its Throughâ€Space Interactions: A Route to Stabilized Three Redox States in Diarylnitroxides. Chemistry - A European Journal, 2020, 26, .	1.7	0
12	Electrochemical Transformations of Chiral Ni(II) Schiff Base Derivative of Serine: A Route to Novel Structures. ChemElectroChem, 2020, 7, 3361-3367.	1.7	8
13	Reductive Amination of Aryl Boronic Acids: Parallelism of the Catalytic Reactivity of Transition Metals and Main Group Elements in the C(sp2)–N Bond-Forming Reactions. Synthesis, 2020, 52, 1897-1902.	1.2	2
14	Solvent-triggered stereoselectivity of α,α-cyclopropanation of amino acids in the Ni(<scp>ii</scp>) chiral coordination environment. Dalton Transactions, 2020, 49, 8636-8644.	1.6	5
15	Which Stereoinductor Is Better for Asymmetric Functionalization of αâ€Amino Acids in a Nickel(II) Coordination Environment? Experimental and DFT Considerations. Chemistry - A European Journal, 2020, 26, 7074-7082.	1.7	9
16	Chameleonic Behavior of the αâ€Methylcyclopropyl Group and Its Throughâ€5pace Interactions: A Route to Stabilized Three Redox States in Diarylnitroxides. Chemistry - A European Journal, 2020, 26, 6793-6804.	1.7	12
17	Molecular design of ambipolar redox-active molecules II: closed-shell systems. Current Opinion in Electrochemistry, 2020, 24, 6-14.	2.5	13
18	Molecular design of ambipolar redox-active open-shell molecules: Principles and implementations. Current Opinion in Electrochemistry, 2020, 24, 15-23.	2.5	18

#	Article	IF	CITATIONS
19	Diarylamine/diarylnitroxide cycle: quantum chemical and electrochemical estimation. Heliyon, 2019, 5, e02735.	1.4	1
20	Carbon―and SO ₂ ‣ocked Diarylnitroxides: Quantum Chemical Consideration, Synthesis, and Electrochemistry. European Journal of Organic Chemistry, 2019, 2019, 6225-6231.	1.2	8
21	Noncovalent interactions within 3D molecular structure of diastereoisomers: A background for stereodependent redox activity. Electrochimica Acta, 2019, 306, 568-574.	2.6	9
22	Stereoselective Electrosynthesis of βâ€Hydroxyâ€Î±â€Amino Acids in the Form of Ni ^{II} ‣chiffâ€Base Complexes. European Journal of Organic Chemistry, 2019, 2019, 3174-3182.	1.2	17
23	Amination of Aryl Boronic Acids with Alkylnitrites: A Convenient Complement to Cu-Promoted Reductive Amination. Organic Letters, 2019, 21, 10028-10032.	2.4	9
24	Sol-gel-modified membranes for all-organic battery based on bis-(tert-butylphenyl)nitroxide. Colloid and Polymer Science, 2019, 297, 317-323.	1.0	3
25	Computational electrochemistry of diarylnitroxides. Mendeleev Communications, 2018, 28, 187-189.	0.6	7
26	Pdâ€Polypyrrole Nanocomposite in Environmentally Friendly Synthesis of Vinylnitriles Using K ₄ Fe(CN) ₆ . ChemistrySelect, 2018, 3, 4237-4243.	0.7	2
27	Twisting of diarylnitroxides: An efficient tool for redox tuning. Electrochimica Acta, 2018, 260, 459-467.	2.6	16
28	Competitive Routes for Electrochemical Oxidation of Substituted Diarylamines: the Guidelines. ChemElectroChem, 2018, 5, 3391-3410.	1.7	11
29	Stability of twisted diarylnitroxides: Photochemical tests. Tetrahedron Letters, 2018, 59, 3124-3127.	0.7	3
30	Stereoselective electrochemical thioalkylation of glycine in Ni(II) coordination environment. Tetrahedron Letters, 2018, 59, 2831-2834.	0.7	15
31	Individual (^{f,t} A)―and (^{f,t} C)â€Fullereneâ€Based Nickel(II) Glycinates: Protected Chiral Amino Acids Directly Linked to a Chiral Ï€â€Electron System. Angewandte Chemie - International Edition, 2017, 56, 2704-2708.	7.2	15
32	Individual (^{f,t} A)―and (^{f,t} C)â€Fullereneâ€Based Nickel(II) Glycinates: Protected Chiral Amino Acids Directly Linked to a Chiral Ï€â€Electron System. Angewandte Chemie, 2017, 129, 2748-2752.	1.6	3
33	Twisted Diarylnitroxides: An Efficient Route for Radical Stabilization. European Journal of Organic Chemistry, 2017, 2017, 4726-4735.	1.2	15
34	Copperâ€Assisted Amination of Boronic Acids for Synthesis of Bulky Diarylamines: Experimental and DFT Study. Chemistry - A European Journal, 2017, 23, 12575-12584.	1.7	16
35	Synthesis of unsymmetrical N-(2-tert-butylphenyl)-N-(4-tert-butylphenyl)nitroxyl radical, the first stable diarylnitroxyl with vacant para-position. Mendeleev Communications, 2016, 26, 535-537.	0.6	13
36	Polymer biquinolyl-containing complexes of Pd(ii) as efficient catalysts for cyanation of aryl and vinyl halides with K4Fe(CN)6. New Journal of Chemistry, 2016, 40, 10465-10473.	1.4	7

Tatiana V Magdesieva

#	Article	IF	CITATIONS
37	New binuclear Ni(II)–glycinate homologues: electrochemically distinguishable diastereomers. Electrochimica Acta, 2015, 179, 263-275.	2.6	6
38	Palladium nanoparticles–polypyrrole composite as an efficient catalyst for cyanation of aryl halides. Electrochimica Acta, 2014, 122, 289-295.	2.6	27
39	Electrochemically Deprotonated Chiral Nickel(II) Glycinate in Stereoselective Nucleophilic Addition to Michael Acceptors: Advantages and Limitations. Organometallics, 2014, 33, 4629-4638.	1.1	27
40	Chiral Nickel(II) Binuclear Complexes: Targeted Diastereoselective Electrosynthesis. Organometallics, 2014, 33, 4639-4654.	1.1	23
41	Palladium–Polypyrrole Nanoparticles-Catalyzed Sonogashira Coupling. Mendeleev Communications, 2012, 22, 305-306.	0.6	25
42	Polypyrrole–palladium nanoparticles composite as efficient catalyst for Suzuki–Miyaura coupling. Journal of Molecular Catalysis A, 2012, 353-354, 50-57.	4.8	42
43	Ambipolar diarylnitroxides: Molecular design and electrochemical testing. Electrochemical Science Advances, 0, , .	1.2	1