Marco Lubrano Lavadera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221564/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CO 2 and H 2 O effect on propane auto-ignition delay times under mild combustion operative conditions. Combustion and Flame, 2015, 162, 533-543.	2.8	95
2	An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combustion and Flame, 2021, 228, 13-28.	2.8	56
3	H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons. Flow, Turbulence and Combustion, 2016, 96, 433-448.	1.4	49
4	Autoignition delay times of propane mixtures under MILD conditions at atmospheric pressure. Combustion and Flame, 2014, 161, 3022-3030.	2.8	43
5	Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, <i>n</i> -Heptane, and Iso-octane. Energy & Fuels, 2021, 35, 7156-7168.	2.5	39
6	Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame, 2021, 223, 349-360.	2.8	33
7	Effects of Bath Gas and NO _{<i>x</i>} Addition on <i>n</i> Pentane Low-Temperature Oxidation in a Jet-Stirred Reactor. Energy & Fuels, 2019, 33, 5655-5663.	2.5	24
8	An experimental and kinetic modeling study on nitric oxide formation in premixed C3 alcohols flames. Proceedings of the Combustion Institute, 2021, 38, 805-812.	2.4	24
9	Oscillatory Behavior in Methane Combustion: Influence of the Operating Parameters. Energy & Fuels, 2018, 32, 10088-10099.	2.5	22
10	Experimental and modeling study of nitric oxide formation in premixed methanolÂ+Âair flames. Combustion and Flame, 2020, 213, 322-330.	2.8	20
11	Experimental study of the effect of CO2 on propane oxidation in a Jet Stirred Flow Reactor. Fuel, 2016, 184, 876-888.	3.4	19
12	Propane oxidation in a Jet Stirred Flow Reactor. The effect of H 2 O as diluent species. Experimental Thermal and Fluid Science, 2018, 95, 35-43.	1.5	18
13	Experimental and modeling study of laminar burning velocities and nitric oxide formation in premixed ethylene/air flames. Proceedings of the Combustion Institute, 2021, 38, 395-404.	2.4	16
14	Optimization of Chemical Kinetics for Methane and Biomass Pyrolysis Products in Moderate or Intense Low-Oxygen Dilution Combustion. Energy & Fuels, 2018, 32, 10194-10201.	2.5	15
15	Laminar burning velocities of methaneÂ+Âformic acidÂ+Âair flames: Experimental and modeling study. Combustion and Flame, 2021, 225, 65-73.	2.8	14
16	Thermochemical oscillation of methane MILD combustion diluted with N ₂ /CO ₂ /H ₂ O. Combustion Science and Technology, 2019, 191, 68-80.	1.2	12
17	The influence of ammonia on the laminar burning velocities of methylcyclohexane and toluene: An experimental and kinetic modeling study. Combustion and Flame, 2022, 237, 111839.	2.8	12
18	Methyl-3-hexenoate combustion chemistry: Experimental study and numerical kinetic simulation. Combustion and Flame, 2020, 222, 170-180.	2.8	11

#	Article	IF	CITATIONS
19	Experimental and modelling study of laminar burning velocity of aqueous ethanol. Fuel, 2019, 257, 116069.	3.4	10
20	Data Consistency of the Burning Velocity Measurements Using the Heat Flux Method: Syngas Flames. Energy & Fuels, 2020, 34, 3725-3742.	2.5	10
21	Measurements of the laminar burning velocities and NO concentrations in neat and blended ethanol and n-heptane flames. Fuel, 2021, 288, 119585.	3.4	6
22	Laminar burning velocities of propionic acidÂ+Âair flames: Experimental, modeling and data consistency study. Combustion and Flame, 2021, 230, 111431.	2.8	4
23	Oxidation kinetics of methyl crotonate: A comprehensive modeling and experimental study. Combustion and Flame, 2021, 229, 111409.	2.8	3
24	Experimental and modeling study of NO formation in methyl acetateÂ+Âair flames. Combustion and Flame, 2022, 242, 112213.	2.8	3
25	Thermo-kinetic instabilities in model reactors. Examples in experimental tests. AIP Conference Proceedings, 2017, , .	0.3	0