
## Elena Sommariva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8221051/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human-iPSC-Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardiomyocyte Contributions to Heart Disease. Cell Stem Cell, 2020, 26, 862-879.e11.                                                                      | 5.2 | 337       |
| 2  | Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy.<br>European Heart Journal, 2016, 37, 1835-1846.                                                                                                                  | 1.0 | 83        |
| 3  | Schizosaccharomyces pombe Swi1, Swi3, and Hsk1 Are Components of a Novel S-Phase Response<br>Pathway to Alkylation Damage. Molecular and Cellular Biology, 2005, 25, 2770-2784.                                                                                 | 1.1 | 76        |
| 4  | Evidence of SARS-CoV-2 Transcriptional Activity in Cardiomyocytes of COVID-19 Patients without<br>Clinical Signs of Cardiac Involvement. Biomedicines, 2020, 8, 626.                                                                                            | 1.4 | 67        |
| 5  | Diagnostic Yield of Electroanatomic Voltage Mapping in Guiding Endomyocardial Biopsies.<br>Circulation, 2020, 142, 1249-1260.                                                                                                                                   | 1.6 | 61        |
| 6  | New-onset atrial fibrillation as first clinical manifestation of latent Brugada syndrome: prevalence<br>and clinical significance. European Heart Journal, 2009, 30, 2985-2992.                                                                                 | 1.0 | 60        |
| 7  | Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification.<br>European Journal of Human Genetics, 2013, 21, 911-917.                                                                                                  | 1.4 | 58        |
| 8  | Feasibility of Combined Unipolar and Bipolar Voltage Maps to Improve Sensitivity of Endomyocardial<br>Biopsy. Circulation: Arrhythmia and Electrophysiology, 2015, 8, 625-632.                                                                                  | 2.1 | 58        |
| 9  | Effects of canagliflozin on human myocardial redox signalling: clinical implications. European Heart<br>Journal, 2021, 42, 4947-4960.                                                                                                                           | 1.0 | 57        |
| 10 | A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovascular Research, 2011, 91, 606-616.                                                                                            | 1.8 | 50        |
| 11 | CaMKII Activity in the Inflammatory Response of Cardiac Diseases. International Journal of Molecular<br>Sciences, 2019, 20, 4374.                                                                                                                               | 1.8 | 50        |
| 12 | MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy. Scientific<br>Reports, 2017, 7, 4802.                                                                                                                                     | 1.6 | 39        |
| 13 | Rtf1-Mediated Eukaryotic Site-Specific Replication Termination. Genetics, 2008, 180, 27-39.                                                                                                                                                                     | 1.2 | 35        |
| 14 | Non-oxidizable HMGB1 induces cardiac fibroblasts migration via CXCR4 in a CXCL12-independent<br>manner and worsens tissue remodeling after myocardial infarction. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2017, 1863, 2693-2704.         | 1.8 | 35        |
| 15 | Novel risk calculator performance in athletes with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm, 2020, 17, 1251-1259.                                                                                                                          | 0.3 | 32        |
| 16 | Long-term follow-up analysis of a highly characterized arrhythmogenic cardiomyopathy cohort with<br>classical and non-classical phenotypes–a real-world assessment of a novel prediction model: does the<br>subtype really matter. Europace, 2020, 22, 797-805. | 0.7 | 31        |
| 17 | Cell models of arrhythmogenic cardiomyopathy: advances and opportunities. DMM Disease Models and Mechanisms, 2017, 10, 823-835.                                                                                                                                 | 1.2 | 29        |
| 18 | Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular<br>Alteration?. International Journal of Molecular Sciences, 2019, 20, 3986.                                                                                       | 1.8 | 29        |

ELENA SOMMARIVA

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Characteristics of Patients With Arrhythmogenic Left Ventricular Cardiomyopathy. Circulation:<br>Arrhythmia and Electrophysiology, 2020, 13, e009005.                                                            | 2.1 | 29        |
| 20 | Isolation and Characterization of Cardiac Mesenchymal Stromal Cells from Endomyocardial Bioptic<br>Samples of Arrhythmogenic Cardiomyopathy Patients. Journal of Visualized Experiments, 2018, , .               | 0.2 | 24        |
| 21 | Electroanatomical mapping systems and intracardiac echo integration for guided endomyocardial biopsy. Expert Review of Medical Devices, 2017, 14, 609-619.                                                       | 1.4 | 22        |
| 22 | Arrhythmogenic Cardiomyopathy: the Guilty Party in Adipogenesis. Journal of Cardiovascular<br>Translational Research, 2017, 10, 446-454.                                                                         | 1.1 | 21        |
| 23 | The arrhythmogenic cardiomyopathy-specific coding and non-coding transcriptome in human cardiac stromal cells. BMC Genomics, 2018, 19, 491.                                                                      | 1.2 | 21        |
| 24 | Digital PCR for high sensitivity viral detection in false-negative SARS-CoV-2 patients. Scientific Reports, 2021, 11, 4310.                                                                                      | 1.6 | 21        |
| 25 | Excess TGF-β1 Drives Cardiac Mesenchymal Stromal Cells to a Pro-Fibrotic Commitment in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 2673.                               | 1.8 | 17        |
| 26 | Oxidized LDLâ€dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy. EMBO<br>Molecular Medicine, 2021, 13, e14365.                                                                        | 3.3 | 16        |
| 27 | Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue.<br>Frontiers in Physiology, 2020, 11, 279.                                                                            | 1.3 | 15        |
| 28 | Exploring digenic inheritance in arrhythmogenic cardiomyopathy. BMC Medical Genetics, 2017, 18, 145.                                                                                                             | 2.1 | 14        |
| 29 | Arrhythmogenic cardiomyopathy: what blood can reveal?. Heart Rhythm, 2019, 16, 470-477.                                                                                                                          | 0.3 | 14        |
| 30 | Endomyocardial Biopsy: The Forgotten Piece in the Arrhythmogenic Cardiomyopathy Puzzle. Journal of the American Heart Association, 2021, 10, e021370.                                                            | 1.6 | 14        |
| 31 | A dominant-negative MEC3 mutant uncovers new functions for the Rad17 complex and Tel1.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12997-13002.                | 3.3 | 13        |
| 32 | Human Cell Modeling for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020,<br>21, 6388.                                                                                                 | 1.8 | 12        |
| 33 | Myocardial Inflammation, Sports Practice, and Sudden Cardiac Death: 2021 Update. Medicina<br>(Lithuania), 2021, 57, 277.                                                                                         | 0.8 | 12        |
| 34 | Cardiac Biomarkers and Autoantibodies in Endurance Athletes: Potential Similarities with<br>Arrhythmogenic Cardiomyopathy Pathogenic Mechanisms. International Journal of Molecular<br>Sciences, 2021, 22, 6500. | 1.8 | 12        |
| 35 | Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy. International Journal of Cardiology, 2021, 342, 94-102.                                        | 0.8 | 10        |
| 36 | Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac<br>Mesenchymal Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 7467.                     | 1.8 | 9         |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Additional diagnostic value of cardiac magnetic resonance feature tracking in patients with<br>biopsy-proven arrhythmogenic cardiomyopathy. International Journal of Cardiology, 2021, 339, 203-210.                                             | 0.8 | 8         |
| 38 | Generation of human induced pluripotent stem cell line LUMCi027-A and its isogenic gene-corrected line from a patient affected by arrhythmogenic cardiomyopathy and carrying the c.2013delC PKP2 mutation. Stem Cell Research, 2020, 46, 101835. | 0.3 | 7         |
| 39 | Cardiac magnetic resonance features of left dominant arrhythmogenic cardiomyopathy: differential diagnosis with myocarditis. International Journal of Cardiovascular Imaging, 2022, 38, 397-405.                                                 | 0.7 | 7         |
| 40 | Sâ€ICD is effective in preventing sudden death in arrhythmogenic cardiomyopathy athletes during exercise. PACE - Pacing and Clinical Electrophysiology, 2019, 42, 1269-1272.                                                                     | 0.5 | 6         |
| 41 | Compound Heterozygous SCN5A Gene Mutations in Aasymptomatic Brugada Syndrome Child.<br>Neurology International, 2012, 2, e11.                                                                                                                    | 0.2 | 5         |
| 42 | Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Frontiers in Physiology, 2020, 11, 604.                                                              | 1.3 | 5         |
| 43 | Metabolic Signature of Arrhythmogenic Cardiomyopathy. Metabolites, 2021, 11, 195.                                                                                                                                                                | 1.3 | 5         |
| 44 | Presence of SARS-CoV-2 Nucleoprotein in Cardiac Tissues of Donors with Negative COVID-19 Molecular Tests. Diagnostics, 2021, 11, 731.                                                                                                            | 1.3 | 5         |
| 45 | Cyclophilin A in Arrhythmogenic Cardiomyopathy Cardiac Remodeling. International Journal of<br>Molecular Sciences, 2019, 20, 2403.                                                                                                               | 1.8 | 4         |
| 46 | Mechanotransduction and Adrenergic Stimulation in Arrhythmogenic Cardiomyopathy: An Overview of in vitro and in vivo Models. Frontiers in Physiology, 2020, 11, 568535.                                                                          | 1.3 | 3         |
| 47 | Clinical and Molecular Data Define a Diagnosis of Arrhythmogenic Cardiomyopathy in a Carrier of a<br>Brugada-Syndrome-Associated PKP2 Mutation. Genes, 2020, 11, 571.                                                                            | 1.0 | 3         |
| 48 | The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Communications Biology, 2022, 5, 456.                                                                       | 2.0 | 3         |
| 49 | GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2022, 26, 3687-3701.                            | 1.6 | 3         |
| 50 | Derivation of human induced pluripotent stem cell line EURACi004-A from skin fibroblasts of a patient<br>with Arrhythmogenic Cardiomyopathy carrying the heterozygous PKP2 mutation c.2569_3018del50.<br>Stem Cell Research, 2018, 32, 78-82.    | 0.3 | 2         |
| 51 | Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. Biology, 2021, 10, 730.                                                                                                 | 1.3 | 2         |
| 52 | Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism<br>Behind Heart Failure With Preserved Ejection Fraction?. Frontiers in Cardiovascular Medicine, 0, 9, .                                             | 1.1 | 1         |
| 53 | Generation of human induced pluripotent stem cell line EURACi006-A and its isogenic gene-corrected line EURACi006-A-1 from an arrhythmogenic cardiomyopathy patient carrying the c.1643delG PKP2 mutation. Stem Cell Research, 2021, 54, 102426. | 0.3 | 0         |