Takashi Murakami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/822043/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructure, mechanical properties, oxidation behaviors, and cutting performance of TiCO·5N0.5-X (X: W, Mo) cermet specimens prepared by spark plasma sintering. Ceramics International, 2021, 47, 1986-1999.	2.3	8
2	Tribological Behaviors of B ₆ O/Si ₃ N ₄ and B ₆ O/Al ₂ O ₃ Sliding Pairs in Water. Materials Transactions, 2020, 61, 475-481.	0.4	1
3	Tribological Properties of Aluminum and Silicon Borides at High Temperatures. Materials Science Forum, 2018, 941, 1984-1989.	0.3	1
4	High-temperature tribological properties of Mo-Si-B intermetallic alloy/Si3N4 tribopairs. Intermetallics, 2018, 100, 151-162.	1.8	13
5	Friction and Wear Properties of αAlB ₁₂ -NiAl Cermet Prepared by Spark Plasma Sintering. Materials Science Forum, 2016, 879, 1338-1343.	0.3	0
6	Friction and wear properties of spark-plasma-sintered α-AlB12 and SiB6 powder compacts in water. Tribology International, 2015, 92, 446-453.	3.0	8
7	Friction and wear properties of α-AlB12- and SiB6-based ceramics in water. Tribology International, 2014, 74, 38-45.	3.0	13
8	Friction and wear properties of αFeSi2–Si alloy, ReSi1.8 and MoSi2 in ethyl alcohol. Tribology International, 2014, 69, 61-69.	3.0	1
9	High-temperature friction and wear properties of various sliding materials against aluminum alloy 5052. Tribology International, 2013, 60, 45-52.	3.0	22
10	Microstructure, friction and wear properties of αFeSi2–graphite composite specimens. Tribology International, 2013, 67, 98-103.	3.0	3
11	Microstructure and tribological properties of gray cast iron specimens coated by aluminizing, boronizing, chromizing and siliconizing. Materials Research Society Symposia Proceedings, 2012, 1516, 115-120.	0.1	4
12	Friction and wear properties of Fe7Mo6- and ${\rm \hat{l}\pm}FeSi2$ -based alloys in rapeseed oil. Tribology International, 2012, 56, 1-8.	3.0	5
13	Friction and wear properties of Fe–Si intermetallic compounds in ethyl alcohol. Intermetallics, 2012, 20, 68-75.	1.8	28
14	Tribological properties of grey cast iron lubricated using organic compounds containing Mo and ZnDTP additives. Lubrication Science, 2012, 24, 153-164.	0.9	8
15	Microstructure and tribological properties of Fe-Mo alloy-coated steel specimens prepared by low-pressure plasma spraying. Intermetallics, 2011, 19, 1873-1877.	1.8	12
16	Structural and surface property study of sputter deposited transparent conductive Nb-doped titanium oxide films. Thin Solid Films, 2011, 519, 1934-1942.	0.8	23
17	Room-temperature template-free synthesis of dumbbell-like SrSO4 with hierarchical architecture. Journal of Crystal Growth, 2010, 312, 1886-1890.	0.7	11
18	Tribological properties of Fe7Mo6-based-alloy lubricated with poly-alpha-olefin containing PN additive. Tribology International, 2010, 43, 312-319.	3.0	12

TAKASHI MURAKAMI

#	Article	IF	CITATIONS
19	Friction and wear properties of Fe7Mo6-based alloy in ethyl alcohol. Tribology International, 2010, 43, 2183-2189.	3.0	5
20	Friction and wear properties of zirconium and niobium in a hydrogen environment. Wear, 2010, 268, 721-729.	1.5	14
21	Remarkable friction stabilization of AISI 52100 steel by plasma nitriding under lubrication of alkyl naphthalene. Wear, 2010, 268, 917-923.	1.5	19
22	Friction and Wear Properties of Zr and TiC-Based Cermet Specimens in a Hydrogen Gas Atmosphere. Materials Science Forum, 2010, 638-642, 3412-3417.	0.3	2
23	Effects of surface texture size on the tribological properties of slideways. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 885-890.	1.0	26
24	HIGH TEMPERATURE TRIBOLOGICAL PROPERTIES OF SPARK-PLASMA-SINTERED Al2O3-SrSO4 SELF-LUBRICATING NANOCOMPOSITES INCORPORATED WITH AND WITHOUT Ag ADDITION. International Journal of Modern Physics B, 2009, 23, 1425-1431.	1.0	6
25	Tribological Properties of Spark-Plasma-Sintered Al2O3-SrSO4 Self-Lubricating Nanocomposites at Elevated Temperatures. , 2009, , 426-429.		1
26	Effect of contact configuration on the durability and friction coefficient of pressureâ€sprayed MoS ₂ coatings under fretting conditions. Lubrication Science, 2009, 21, 193-209.	0.9	4
27	Microstructure and tribological properties of ZrO2(Y2O3) matrix composites doped with different solid lubricants from room temperature to 800 °C. Wear, 2009, 267, 1353-1360.	1.5	91
28	Mechanical and unlubricated tribological properties of titanium-containing diamond-like carbon coatings. Wear, 2009, 266, 96-102.	1.5	35
29	Effects of Residual Gas on Tribochemical Reactions of SUJ2 Steel in Vacuum and in Argon Gas Atmosphere. Tribology Online, 2009, 4, 103-108.	0.2	2
30	Friction and Wear Properties of Fe7Mo6-Based Alloy under the Lubrication of Ethyl-Alcohol. , 2009, , 376-377.		0
31	Tribological properties of Fe7Mo6-based alloy under two ionic liquid lubrications. Tribology International, 2008, 41, 1083-1089.	3.0	17
32	Influence of Microstructure on the Wear Behavior of SiC-Reinforced Titanium-Matrix Composites Lubricated by Water and by Ethanol. Journal of the American Ceramic Society, 2008, 91, 508-513.	1.9	12
33	Wear Behavior of Self-mated Ti-Si-C Composites and Ti-Si-N Composites Slid Without Lubricant. Tribology Online, 2008, 3, 185-189.	0.2	3
34	High-Temperature Tribological Properties of Barite-Type-Sulfate-Coated Substrates with Different Isoelectric Points. Materials Science Forum, 2007, 539-543, 1200-1205.	0.3	0
35	Evaluation of Tribological Properties of a Cathodic Arc Ion-Plated CrSiN Coating under Both Unlubricated and Boundary-Lubricated Conditions. Materials Science Forum, 2007, 546-549, 1747-1752.	0.3	0
36	Tribological Properties of MoS ₂ -Coated Gray Cast Irons with Some Different Matrix Phases under the Boundary Lubricating Conditions. Key Engineering Materials, 2007, 353-358, 788-791.	0.4	0

#	Article	IF	CITATIONS
37	Fabrication of Functionally Porous Structures by the Sheet Lamination Method. Materials Science Forum, 2007, 561-565, 1711-1714.	0.3	2
38	Spark Plasma Sintered ZrO ₂ (Y ₂ O ₃)-Al ₂ O& Self-Lubricating Nanocomposites for High Temperature Tribological Applications. Key Engineering Materials, 2007, 336-338, 1429-1432.	alt:sub>	;3
39	Tribological Behavior of Phosphor Bronze against SAE52100 Steel under Different Lubricants. Key Engineering Materials, 2007, 353-358, 852-855.	0.4	1
40	The Spark Plasma Sintering Method Using Laminated Titanium Powder Sheet for Fabricating Porous Biocompatible Implants. High Temperature Materials and Processes, 2007, 26, .	0.6	1
41	Friction and wear properties of Fe–Mo intermetallic compounds under oil lubrication. Intermetallics, 2007, 15, 1573-1581.	1.8	35
42	Ionic liquid lubrication of electrodeposited nickel–Si3N4 composite coatings. Wear, 2007, 262, 765-771.	1.5	80
43	High-temperature tribological properties of spark-plasma-sintered Al2O3 composites containing barite-type structure sulfates. Tribology International, 2007, 40, 246-253.	3.0	58
44	High-temperature tribological properties of a cathodic arc ion-plated (V,Ti)N coating. Wear, 2007, 263, 1347-1353.	1.5	34
45	Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient Under Lubricated Conditions. Tribology Letters, 2007, 28, 131-137.	1.2	195
46	Tribological Behavior of SiC-Reinforced Ti3SiC2-Based Composites under Dry Condition and under Lubricated Condition with Water and Ethanol. Journal of the American Ceramic Society, 2006, 89, 060711111453003-???.	1.9	11
47	High-temperature friction properties of BaSO4 and SrSO4 powder films formed on Al2O3 and stainless steel substrates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 432, 52-58.	2.6	29
48	Damping and tribological properties of Fe–Si–C cast iron prepared using various heat treatments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 432, 113-119.	2.6	34
49	High-temperature tribological properties of strontium sulfate films formed on zirconia-alumina, alumina and silicon nitride substrates. Tribology International, 2006, 39, 1576-1583.	3.0	21
50	High-Temperature Friction and Wear Properties of X-BaSO ₄ (X:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf Transactions, 2005, 46, 182-185.	50 227 Td 0.4	(Al _{2- 15}
51	è¶…é«~æ,©ææ−™ãëā⊷ã∤ã®Mo-Si-Bä,‰å…fç³»å•é‡'ã®æ©Ÿæ¢°çš,,性質ãŠã,^ãªæ©Ÿèf½æ€§. Materia Japan,	20015, 44,	1231-137.
52	Tribological properties of spark-plasma-sintered ZrO2(Y2O3)–CaF2–Ag composites at elevated temperatures. Wear, 2005, 258, 1444-1454.	1.5	77
53	High-temperature tribological properties of Al2O3, Ni–20mass% Cr and NiAl spark-plasma-sintered composites containing BaF2–CaF2 phase. Wear, 2005, 259, 626-633.	1.5	47
54	Spark-plasma-sintered ZrO2(Y2O3)-BaCrO4 self-lubricating composites for high temperature tribological applications. Ceramics International, 2005, 31, 543-553.	2.3	53

TAKASHI MURAKAMI

#	Article	IF	CITATIONS
55	Oxidation protective silicide coating on Mo-Si-B alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 627-636.	1.1	25
56	Microstructure of Nb substrates coated with Mo(Si,Al)2–Al2O3 composite and B-doped Mo5Si3 layers by spark plasma sintering. Intermetallics, 2004, 12, 749-754.	1.8	29
57	The synergistic effects of CaF2 and Au lubricants on tribological properties of spark-plasma-sintered ZrO2(Y2O3) matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 234-243.	2.6	51
58	High-Temperature Tribological Properties of Al ₂ O ₃ -X (X:) Tj ETQq0 0 0 rgBT /Overloch Containing Sintering Additives. Materials Transactions, 2004, 45, 2614-2617.	R 10 Tf 50 0.4	627 Td (Ba 16
59	Oxidation behavior and thermal stability of Cr-doped Nb(Si,Al) 2 and Nb 3 Si 5 Al 2 matrix compacts prepared by spark plasma sintering. Intermetallics, 2003, 11, 269-278.	1.8	22
60	Oxidation behavior of Mo–9Si–18B alloy pack-cemented in a Si-base pack mixture. Intermetallics, 2003, 11, 763-772.	1.8	39
61	Oxidation Behavior of Cr-Doped Nb(Si,Al) ₂ and Coating Nb Substrates with Cr-Doped Nb(Si,Al) ₂ . Materials Science Forum, 2003, 426-432, 2557-2562.	0.3	3
62	Oxidation Behavior of Mo-Based Alloys Coated with Silicide Using the Halide-Activated Pack Cementation Method. Materials Science Forum, 2003, 426-432, 1745-1750.	0.3	2
63	Preparation and Mechanical Properties of Nanocrystalline Bulk Materials by Spark Plasma Sintering Process. Materials Science Forum, 2003, 426-432, 2375-2380.	0.3	7
64	Tensile Properties of Nanostructured FGMs Produced by Spark Plasma Sintering. Materials Science Forum, 2003, 423-425, 283-286.	0.3	7
65	Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering. Intermetallics, 2001, 9, 621-627.	1.8	82
66	Oxidation resistance of powder compacts of the Nb–Si–Cr system and Nb3Si5Al2 matrix compacts prepared by spark plasma sintering. Intermetallics, 2001, 9, 629-635.	1.8	55
67	Mechanical properties of spark plasma sintered Nb–Al compacts strengthened by dispersion of Nb2N phase and additions of Mo and W. Intermetallics, 1999, 7, 731-739.	1.8	25
68	Microstructure, mechanical properties and oxidation behavior of powder compacts of the Nb–Si–B system prepared by spark plasma sintering. Intermetallics, 1999, 7, 1043-1048.	1.8	73
69	Microstructure of Nb–Al powders consolidated by spark plasma sintering process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 239-240, 672-679.	2.6	39
70	High Temperature Tribology and Solid Lubrication of Advanced Ceramics. Key Engineering Materials, 0, 368-372, 1088-1091.	0.4	11
71	Influences of SrSO ₄ and Ag on High Temperature Tribological Properties of Spark-Plasma-Sintered ZrO ₂ (Y ₂ O ₃)-Al ₂ O& Composites. Key Engineering Materials. 0. 434-435. 138-143.	lt;sub>	3
72	Friction and Wear Properties of Fe ₇ Mo ₆ -Based Alloy	0.3	0

under Various Sliding Conditions. Materials Science Forum, 0, 706-709, 1083-1088.

#	Article	IF	CITATIONS
73	Friction and Wear Properties of the Siliconized, Chromized and Borochromized Steel Substrates. Materials Science Forum, 0, 783-786, 1464-1469.	0.3	3
74	High-Temperature Tribological Properties of ReB ₂ -Based Ceramic/Si ₃ N ₄ Sliding Pairs, Materials Science Forum, 0, 1016, 978-983	0.3	0

Ceramic/Si₃N₄ Sliding Pairs. Materials Science Forum, 0, 1016, 978-983. 74