Andrew M Muir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219938/publications.pdf

Version: 2024-02-01

58	1,373	21	34
papers	citations	h-index	g-index
62	62	62	1336
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	On the relevance of animal behavior to the management and conservation of fishes and fisheries. Environmental Biology of Fishes, 2023, 106, 785-810.	1.0	10
2	A chromosomeâ€anchored genome assembly for Lake Trout (<i>Salvelinus namaycush</i>). Molecular Ecology Resources, 2022, 22, 679-694.	4.8	16
3	Next-generation lampricides: a three-stage process to develop improved control tools for invasive sea lamprey. Canadian Journal of Fisheries and Aquatic Sciences, 2022, 79, 692-702.	1.4	7
4	Managing native and non-native sea lamprey (Petromyzon marinus) through anthropogenic change: A prospective assessment of key threats and uncertainties. Journal of Great Lakes Research, 2021, 47, S704-S722.	1.9	17
5	Introduction. The Lake Charr: Biology, Ecology, Distribution, and Management. , 2021, , 1-12.		2
6	Amongâ€individual diet variation within a lake trout ecotype: Lack of stability of niche use. Ecology and Evolution, 2021, 11, 1457-1475.	1.9	4
7	Temporal instability of lake charr phenotypes: Synchronicity of growth rates and morphology linked to environmental variables?. Evolutionary Applications, 2021, 14, 1159-1177.	3.1	2
8	Editorial: Global fish passage issues. Aquaculture and Fisheries, 2021, 6, 111-112.	2.2	1
9	A renewed philosophy about supplemental sea lamprey controls. Journal of Great Lakes Research, 2021, 47, S742-S752.	1.9	29
10	Foreword: Control and Conservation of Lampreys Beyond 2020 - Proceedings from the 3rd Sea Lamprey International Symposium (SLIS III). Journal of Great Lakes Research, 2021, 47, S1-S10.	1.9	5
11	Potential changes to the biology and challenges to the management of invasive sea lamprey <i>Petromyzon marinus</i> in the Laurentian Great Lakes due to climate change. Global Change Biology, 2020, 26, 1118-1137.	9.5	22
12	Single-Stream Recycling Inspires Selective Fish Passage Solutions for the Connectivity Conundrum in Aquatic Ecosystems. BioScience, 2020, 70, 871-886.	4.9	27
13	Gut contents from multiple morphs of lake trout (Salvelinus namaycush) at two offshore shoals in Lake Superior. Journal of Great Lakes Research, 2020, 46, 1382-1390.	1.9	7
14	Arctic freshwater fish productivity and colonization increase with climate warming. Nature Climate Change, 2020, 10, 428-433.	18.8	29
15	Variation in Fork-to-Total Length Relationships of North American Lake Trout Populations. Journal of Fish and Wildlife Management, 2020, 11, 263-272.	0.9	4
16	Alternative Sea Lamprey Barrier Technologies: History as a Control Tool. Reviews in Fisheries Science and Aquaculture, 2019, 27, 438-457.	9.1	36
17	Assessing the impact of charr research past, present, and future. Hydrobiologia, 2019, 840, 1-10.	2.0	1
18	Linking Water Quality and Fishery Management Facilitated the Development of Ecosystemâ€based Management in the Great Lakes Basin. Fisheries, 2019, 44, 288-292.	0.8	9

#	Article	IF	Citations
19	The role of a multi-jurisdictional organization in developing ecosystem-based management for fisheries in the Great Lakes basin. Aquatic Ecosystem Health and Management, 2019, 22, 329-341.	0.6	3
20	Habitat overlap of juvenile and adult lake trout of Great Bear Lake: Evidence for lack of a predation gradient?. Ecology of Freshwater Fish, 2019, 28, 485-498.	1.4	8
21	Foodâ€web structure and ecosystem function in the Laurentian Great Lakes—Toward a conceptual model. Freshwater Biology, 2019, 64, 1-23.	2.4	37
22	Rapid evolution meets invasive species control: the potential for pesticide resistance in sea lamprey. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75, 152-168.	1.4	47
23	Small-scale intraspecific patterns of adaptive immunogenetic polymorphisms and neutral variation in Lake Superior lake trout. Immunogenetics, 2018, 70, 53-66.	2.4	7
24	From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?. PLoS ONE, 2018, 13, e0193925.	2.5	14
25	Investigating the extent of parallelism in morphological and genomic divergence among lake trout ecotypes in Lake Superior. Molecular Ecology, 2017, 26, 1477-1497.	3.9	46
26	Evidence of a remnant self-sustaining strain of lake trout in the Lake Michigan basin. Journal of Great Lakes Research, 2017, 43, 155-162.	1.9	2
27	Islands in the ice stream: were spawning habitats for native salmonids in the Great Lakes created by paleoâ€ice streams?. Fish and Fisheries, 2017, 18, 347-359.	5.3	11
28	Lake whitefish (Coregonus clupeaformis) energy and nutrient partitioning in lakes Michigan, Erie and Superior. Journal of Great Lakes Research, 2017, 43, 144-154.	1,9	3
29	Genetic and phenotypic variation along an ecological gradient in lake trout Salvelinus namaycush. BMC Evolutionary Biology, 2016, 16, 219.	3.2	15
30	Multiple generalist morphs of Lake Trout: Avoiding constraints on the evolution of intraspecific divergence?. Ecology and Evolution, 2016, 6, 7727-7741.	1.9	21
31	Challenge to the model of lake charr evolution: shallow- and deep-water morphs exist within a small postglacial lake. Biological Journal of the Linnean Society, 2016, , .	1.6	12
32	The adaptive capacity of lake food webs: from individuals to ecosystems. Ecological Monographs, 2016, 86, 4-19.	5.4	84
33	Loss of genetic diversity and reduction of genetic distance among lake trout Salvelinus namaycush ecomorphs, Lake Superior 1959 to 2013. Journal of Great Lakes Research, 2016, 42, 204-216.	1.9	32
34	Life history differences between fat and lean morphs of lake charr (Salvelinus namaycush) in Great Slave Lake, Northwest Territories, Canada. Hydrobiologia, 2016, 783, 21-35.	2.0	12
35	If Arctic charr <i>Salvelinus alpinus</i> is †the most diverse vertebrate', what is the lake charr <i>Salvelinus namaycush</i> ?. Fish and Fisheries, 2016, 17, 1194-1207.	5. 3	98
36	Life history variation among four lake trout morphs at Isle Royale, Lake Superior. Journal of Great Lakes Research, 2016, 42, 421-432.	1.9	31

#	Article	IF	CITATIONS
37	Morphological and genetic variation in Cisco (Coregonus artedi) and Shortjaw Cisco (C. zenithicus): multiple origins of Shortjaw Cisco in inland lakes require a lake-specific conservation approach. Conservation Genetics, 2016, 17, 45-56.	1.5	21
38	New insight into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes. Environmental Biology of Fishes, 2015, 98, 173-181.	1.0	27
39	Reproductive life-history strategies in lake whitefish (<i>Coregonus clupeaformis</i>) from the Laurentian Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 2014, 71, 1256-1269.	1.4	27
40	Morphology and life history of the <scp>G</scp> reat <scp>S</scp> lave <scp>L</scp> ake ciscoes (<scp>S</scp> almoniformes: <scp>C</scp> oregonidae). Ecology of Freshwater Fish, 2014, 23, 453-469.	1.4	17
41	Predation by alewife on lake trout fry emerging from laboratory reefs: Estimation of fry survival and assessment of predation potential. Journal of Great Lakes Research, 2014, 40, 429-434.	1.9	8
42	Lake trout in northern Lake Huron spawn on submerged drumlins. Journal of Great Lakes Research, 2014, 40, 415-420.	1.9	35
43	Ecomorphological Diversity of Lake Trout at Isle Royale, Lake Superior. Transactions of the American Fisheries Society, 2014, 143, 972-987.	1.4	67
44	Past, present and future of fishery management on one of the world's last remaining pristine great lakes: Great Bear Lake, Northwest Territories, Canada. Reviews in Fish Biology and Fisheries, 2013, 23, 293-315.	4.9	7
45	Ontogenetic shifts in morphology and resource use of cisco <i>Coregonus artedi</i> . Journal of Fish Biology, 2013, 82, 600-617.	1.6	20
46	Lake charr Salvelinus namaycush spawning behaviour: new field observations and a review of current knowledge. Reviews in Fish Biology and Fisheries, 2012, 22, 575-593.	4.9	42
47	Seasonal distribution of bloater (Coregonus hoyi) in the waters of Lake Huron surrounding the Bruce Peninsula. Journal of Great Lakes Research, 2012, 38, 381-389.	1.9	2
48	A Perspective on Perspectives: Methods to Reduce Variation in Shape Analysis of Digital Images. Transactions of the American Fisheries Society, 2012, 141, 1161-1170.	1.4	46
49	Polymethylene-interrupted fatty acids: Biomarkers for native and exotic mussels in the Laurentian Great Lakes. Journal of Great Lakes Research, 2011, 37, 289-297.	1.9	7
50	Bioaccumulation and biotransformation of decabromodiphenyl ether and effects on daily growth in juvenile lake whitefish (Coregonus clupeaformis). Ecotoxicology, 2010, 19, 751-760.	2.4	21
51	Assessing feeding competition between lake whitefish Coregonus clupeaformis and round whitefish Prosopium cylindraceum. Environmental Epigenetics, 2010, 56, 109-117.	1.8	13
52	Does condition of Lake Whitefish spawners affect physiological condition of juveniles?. Journal of Great Lakes Research, 2010, 36, 92-99.	1.9	18
53	Spatio-temporal trends in the food habits of age-O lake whitefish. Journal of Great Lakes Research, 2010, 36, 66-72.	1.9	21
54	Global introductions of salmon and trout in the genus Oncorhynchus: 1870–2007. Reviews in Fish Biology and Fisheries, 2008, 18, 313-344.	4.9	205

#	Article	IF	CITATIONS
55	A Comparison of the Scale and Otolith Methods of Age Estimation for Lake Whitefish in Lake Huron. North American Journal of Fisheries Management, 2008, 28, 625-635.	1.0	28
56	An Evaluation of Age Estimation Structures for Lake Whitefish in Lake Michigan: Selecting an Aging Method Based on Precision and a Decision Analysis. North American Journal of Fisheries Management, 2008, 28, 1928-1940.	1.0	23
57	Insights from a novel, user-driven science transfer program for resource management. Socio-Ecological Practice Research, 0, , 1.	1.9	1
58	A CHARRmed life: a synthesis of scientific contributions by David Lloyd George Noakes (1942–2020). Environmental Biology of Fishes, 0, , 1.	1.0	3