Kiran K. Soma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219768/publications.pdf

Version: 2024-02-01

116	7,142	50	81
papers	citations	h-index	g-index
121	121	121	4011 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Glucocorticoid Production in Lymphoid Organs: Acute Effects of Lipopolysaccharide in Neonatal and Adult Mice. Endocrinology, 2022, 163 , .	1.4	5
2	Androgen synthesis inhibition increases behavioural flexibility and <scp>mPFC</scp> tyrosine hydroxylase in gonadectomized male rats. Journal of Neuroendocrinology, 2022, 34, e13128.	1.2	6
3	Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. Journal of Neuroendocrinology, 2021, 33, e12922.	1.2	22
4	Steroid profiling of glucocorticoids in microdissected mouse brain across development. Developmental Neurobiology, 2021, 81, 189-206.	1.5	12
5	SteroidXtract: Deep Learning-Based Pattern Recognition Enables Comprehensive and Rapid Extraction of Steroid-Like Metabolic Features for Automated Biology-Driven Metabolomics. Analytical Chemistry, 2021, 93, 5735-5743.	3.2	11
6	Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain, Behavior, & Immunity - Health, 2021, 18, 100352.	1.3	6
7	Reprint of "Concepts derived from the Challenge Hypothesis― Hormones and Behavior, 2020, 123, 104802.	1.0	10
8	Effects of aging on testosterone and androgen receptors in the mesocorticolimbic system of male rats. Hormones and Behavior, 2020, 120, 104689.	1.0	12
9	Sucrose consumption alters steroid and dopamine signalling in the female rat brain. Journal of Endocrinology, 2020, 245, 231-246.	1.2	25
10	Concepts derived from the Challenge Hypothesis. Hormones and Behavior, 2019, 115, 104550.	1.0	23
11	Measurement of 11-dehydrocorticosterone in mice, rats and songbirds: Effects of age, sex and stress. General and Comparative Endocrinology, 2019, 281, 173-182.	0.8	16
12	Phenotypic flexibility of glucocorticoid signaling in skeletal muscles of a songbird preparing to migrate. Hormones and Behavior, 2019, 116, 104586.	1.0	14
13	Preparing to migrate: expression of androgen signaling molecules and insulin-like growth factor-1 in skeletal muscles of Gambel's white-crowned sparrows. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2019, 205, 113-123.	0.7	9
14	Pubertal development of estradiol-induced hypothalamic progesterone synthesis. Hormones and Behavior, 2019, 111, 110-113.	1.0	18
15	Neuropeptide Y and orexin immunoreactivity in the sparrow brain coincide with seasonal changes in energy balance and steroids. Journal of Comparative Neurology, 2019, 527, 347-361.	0.9	9
16	Rapid effects of estradiol on aggression depend on genotype in a species with an estrogen receptor polymorphism. Hormones and Behavior, 2018, 98, 210-218.	1.0	28
17	Testosterone and Corticosterone in the Mesocorticolimbic System of Male Rats: Effects of Gonadectomy and Caloric Restriction. Endocrinology, 2018, 159, 450-464.	1.4	44
18	Effects of aging on executive functioning and mesocorticolimbic dopamine markers in male Fischer 344Â× brown Norway rats. Neurobiology of Aging, 2018, 72, 134-146.	1.5	16

#	Article	IF	CITATIONS
19	Aggressive Behavior., 2018, , 242-247.		9
20	Androgen Regulation of the Mesocorticolimbic System and Executive Function. Frontiers in Endocrinology, 2018, 9, 279.	1.5	59
21	Rapid effects of $17\hat{l}^2$ -estradiol on aggressive behavior in songbirds: Environmental and genetic influences. Hormones and Behavior, 2018, 104, 41-51.	1.0	25
22	Sex steroid profiles in zebra finches: Effects of reproductive state and domestication. General and Comparative Endocrinology, 2017, 244, 108-117.	0.8	15
23	Tyramide Signal Amplification Permits Immunohistochemical Analyses of Androgen Receptors in the Rat Prefrontal Cortex. Journal of Histochemistry and Cytochemistry, 2017, 65, 295-308.	1.3	28
24	Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. Journal of Leukocyte Biology, 2017, 101, 893-900.	1.5	31
25	Differential activation of endocrine-immune networks by arthritis challenge: Insights from colony-specific responses. Scientific Reports, 2017, 7, 698.	1.6	12
26	Local glucocorticoid production in lymphoid organs of mice and birds: Functions in lymphocyte development. Hormones and Behavior, 2017, 88, 4-14.	1.0	33
27	Rapid Effects of Estrogens on Avian Brain and Social Behavior. , 2017, , 291-303.		5
28	A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice. PLoS ONE, 2017, 12, e0174030.	1.1	21
29	Identification of Avian Corticosteroid-binding Globulin (SerpinA6) Reveals the Molecular Basis of Evolutionary Adaptations in SerpinA6 Structure and Function as a Steroid-binding Protein. Journal of Biological Chemistry, 2016, 291, 11300-11312.	1.6	16
30	Context-dependent effects of testosterone treatment to males on pair maintenance behaviour in zebra finches. Animal Behaviour, 2016, 114, 155-164.	0.8	11
31	Lymphoid organs of neonatal and adult mice preferentially produce active glucocorticoids from metabolites, not precursors. Brain, Behavior, and Immunity, 2016, 57, 271-281.	2.0	24
32	Rapid Effects of an Aggressive Interaction on Dehydroepiandrosterone, Testosterone and Oestradiol Levels in the Male Song Sparrow Brain: a Seasonal Comparison. Journal of Neuroendocrinology, 2016, 28, 12345.	1.2	31
33	Locally elevated cortisol in lymphoid organs of the developing zebra finch but not Japanese quail or chicken. Developmental and Comparative Immunology, 2016, 54, 116-125.	1.0	21
34	Sex steroid profiles and pair-maintenance behavior of captive wild-caught zebra finches (Taeniopygia) Tj ETQq0 0 Physiology, 2016, 202, 35-44.	0 rgBT /O 0.7	verlock 10 Tf 11
35	Neuronal Gonadotrophinâ€Releasing Hormone (GnRH) and Astrocytic Gonadotrophin Inhibitory Hormone (GnIH) Immunoreactivity in the Adult RatÂHippocampus. Journal of Neuroendocrinology, 2015, 27, 772-786.	1.2	15
36	Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function, and adrenocortical responses in zebra finches. Journal of Experimental Biology, 2015, 218, 2847-55.	0.8	50

#	Article	IF	CITATIONS
37	Rapid Effects of Estradiol on Aggression in Birds and Mice: The Fast and the Furious: Fig. 1. Integrative and Comparative Biology, 2015, 55, 281-293.	0.9	59
38	Colony-Specific Differences in Endocrine and Immune Responses to an Inflammatory Challenge in Female Sprague Dawley Rats. Endocrinology, 2015, 156, 4604-4617.	1.4	18
39	Non-invasive administration of $17\hat{l}^2$ -estradiol rapidly increases aggressive behavior in non-breeding, but not breeding, male song sparrows. Hormones and Behavior, 2015, 69, 31-38.	1.0	48
40	A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 35-45.	1,2	22
41	Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch. Hormones and Behavior, 2015, 76, 11-22.	1.0	30
42	Steroid Profiling Reveals Widespread Local Regulation of Glucocorticoid Levels During Mouse Development. Endocrinology, 2015, 156, 511-522.	1.4	53
43	Regulation of local steroidogenesis in the brain and in prostate cancer: Lessons learned from interdisciplinary collaboration. Frontiers in Neuroendocrinology, 2015, 36, 108-129.	2.5	28
44	DHEA effects on brain and behavior: Insights from comparative studies of aggression. Journal of Steroid Biochemistry and Molecular Biology, 2015, 145, 261-272.	1.2	105
45	Effects of corticosterone and DHEA on doublecortin immunoreactivity in the song control system and hippocampus of adult song sparrows. Developmental Neurobiology, 2014, 74, 52-62.	1.5	16
46	Developmental programming of the HPA and HPG axes by early-life stress in male and female song sparrows. General and Comparative Endocrinology, 2014, 196, 72-80.	0.8	54
47	Acute and chronic effects of an aromatase inhibitor on pair-maintenance behavior of water-restricted zebra finch pairs. General and Comparative Endocrinology, 2014, 196, 62-71.	0.8	13
48	Effects of nutritional stress during different developmental periods on song and the hypothalamic–pituitary–adrenal axis in zebra finches. Hormones and Behavior, 2014, 65, 285-293.	1.0	37
49	Stress in the wild: Chronic predator pressure and acute restraint affect plasma DHEA and corticosterone levels in a songbird. Stress, 2013, 16, 363-367.	0.8	19
50	Year-round territorial aggression is independent of plasma DHEA in the European nuthatch Sitta europaea. Hormones and Behavior, 2013, 63, 166-172.	1.0	11
51	Sex Steroid Levels and <scp>AD</scp> â€Like Pathology in 3x <scp>T</scp> g <scp>AD</scp> Mice. Journal of Neuroendocrinology, 2013, 25, 131-144.	1.2	34
52	Gonadotropin releasing hormone (GnRH) and gonadotropin inhibitory hormone (GnIH) in the songbird hippocampus: Regional and sex differences in adult zebra finches. Peptides, 2013, 46, 64-75.	1,2	9
53	Effects of water restriction on reproductive physiology and affiliative behavior in an opportunistically-breeding and monogamous songbird, the zebra finch. Hormones and Behavior, 2013, 63, 462-474.	1.0	35
54	Inhibition of Hippocampal Aromatization Impairs Spatial Memory Performance in a Male Songbird. Endocrinology, 2013, 154, 4707-4714.	1.4	62

#	Article	IF	Citations
55	Fasting Increases Aggression and Differentially Modulates Local And Systemic Steroid Levels in Male Zebra Finches. Endocrinology, 2013, 154, 4328-4339.	1.4	44
56	Rapid and Widespread Effects of $17\hat{l}^2$ -Estradiol on Intracellular Signaling in the Male Songbird Brain: A Seasonal Comparison. Endocrinology, 2012, 153, 1364-1376.	1.4	54
57	Soft song during aggressive interactions: Seasonal changes and endocrine correlates in song sparrows. Hormones and Behavior, 2012, 62, 455-463.	1.0	17
58	Regulation of 3Î ² -HSD activity in the songbird brain. Journal of Ornithology, 2012, 153, 227-234.	0.5	13
59	Sample Preparation and Liquid Chromatography-Tandem Mass Spectrometry for Multiple Steroids in Mammalian and Avian Circulation. PLoS ONE, 2012, 7, e32496.	1.1	63
60	Non-breeding feather concentrations of testosterone, corticosterone and cortisol are associated with subsequent survival in wild house sparrows. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1560-1566.	1.2	90
61	Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E11-E24.	1.8	219
62	Aggressive interactions differentially modulate local and systemic levels of corticosterone and DHEA in a wild songbird. Hormones and Behavior, 2011, 60, 389-396.	1.0	35
63	Measurement of Steroid Concentrations in Brain Tissue: Methodological Considerations. Frontiers in Endocrinology, 2011, 2, 39.	1.5	83
64	Rapid Effects of Aggressive Interactions on Aromatase Activity and Oestradiol in Discrete Brain Regions of Wild Male White-Crowned Sparrows. Journal of Neuroendocrinology, 2011, 23, 742-753.	1.2	67
65	Multiple measures elucidate glucocorticoid responses to environmental variation in predation threat. Oecologia, 2011, 166, 607-614.	0.9	59
66	DHEA and estradiol levels in brain, gonads, adrenal glands, and plasma of developing male and female European starlings. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2011, 197, 949-958.	0.7	10
67	$17\hat{l}^2$ -Estradiol levels in male zebra finch brain: Combining Palkovits punch and an ultrasensitive radioimmunoassay. General and Comparative Endocrinology, 2010, 167, 18-26.	0.8	50
68	Corticosterone and dehydroepiandrosterone have opposing effects on adult neuroplasticity in the avian song control system. Journal of Comparative Neurology, 2010, 518, 3662-3678.	0.9	69
69	Elevated corticosterone levels in stomach milk, serum, and brain of male and female offspring after maternal corticosterone treatment in the rat. Developmental Neurobiology, 2010, 70, 714-725.	1.5	47
70	$3\hat{1}^2\hat{a}\in HSD$ in songbird brain: subcellular localization and rapid regulation by estradiol. Journal of Neurochemistry, 2010, 115, 667-675.	2.1	20
71	Corticosterone and cortisol binding sites in plasma, immune organs and brain of developing zebra finches: Intracellular and membrane-associated receptors. Brain, Behavior, and Immunity, 2010, 24, 908-918.	2.0	51
72	Aggressive interactions rapidly increase androgen synthesis in the brain during the non-breeding season. Hormones and Behavior, 2010, 57, 381-389.	1.0	129

#	Article	IF	Citations
73	Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain. PLoS ONE, 2010, 5, e15727.	1.1	52
74	Cortisol and corticosterone in immune organs and brain of European starlings: developmental changes, effects of restraint stress, comparison with zebra finches. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R42-R51.	0.9	24
75	Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effects of season and acute stress. European Journal of Neuroscience, 2009, 29, 1905-1914.	1.2	51
76	Effects of aggressive encounters on plasma corticosteroid-binding globulin and its ligands in white-crowned sparrows. Hormones and Behavior, 2009, 56, 339-347.	1.0	50
77	Aggressive encounters differentially affect serum dehydroepiandrosterone and testosterone concentrations in male Siberian hamsters (Phodopus sungorus). Hormones and Behavior, 2009, 56, 376-381.	1.0	30
78	Rapid estrogen regulation of DHEA metabolism in the male and female songbird brain. Journal of Neurochemistry, 2008, 104, 244-253.	2.1	48
79	Effects of blood collection on wild birds: an update. Journal of Avian Biology, 2008, 39, 369-378.	0.6	74
80	Novel mechanisms for neuroendocrine regulation of aggression. Frontiers in Neuroendocrinology, 2008, 29, 476-489.	2.5	195
81	Analysis of steroids in songbird plasma and brain by coupling solid phase extraction to radioimmunoassay. General and Comparative Endocrinology, 2008, 155, 503-510.	0.8	114
82	Neurosteroids, immunosteroids, and the Balkanization of endocrinology. General and Comparative Endocrinology, 2008, 157, 266-274.	0.8	133
83	Plasma DHEA levels in wild, territorial red squirrels: Seasonal variation and effect of ACTH. General and Comparative Endocrinology, 2008, 158, 61-67.	0.8	62
84	Neuroprogesterone: Key to estrogen positive feedback?. Brain Research Reviews, 2008, 57, 470-480.	9.1	102
85	3Î ² -HSD activates DHEA in the songbird brain. Neurochemistry International, 2008, 52, 611-620.	1.9	50
86	Sex differences in DHEA and estradiol during development in a wild songbird: Jugular versus brachial plasma. Hormones and Behavior, 2008, 54, 194-202.	1.0	15
87	Cortisol and corticosterone in the songbird immune and nervous systems: local vs. systemic levels during development. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 295, R103-R110.	0.9	64
88	Dehydroepiandrosterone and Corticosterone Are Regulated by Season and Acute Stress in a Wild Songbird: Jugular Versus Brachial Plasma. Endocrinology, 2008, 149, 2537-2545.	1.4	91
89	Testosterone and Aggression: Berthold, Birds and Beyond. Journal of Neuroendocrinology, 2006, 18, 543-551.	1.2	204
90	Colocalisation of Dynorphin A and Neurokinin B Immunoreactivity in the Arcuate Nucleus and Median Eminence of the Sheep. Journal of Neuroendocrinology, 2006, 18, 534-541.	1.2	110

#	Article	IF	Citations
91	Neural responses to aggressive challenge correlate with behavior in nonbreeding sparrows. NeuroReport, 2005, 16, 1719-1723.	0.6	64
92	Neurosteroids and Female Reproduction: Estrogen Increases $3\hat{l}^2$ -HSD mRNA and Activity in Rat Hypothalamus. Endocrinology, 2005, 146, 4386-4390.	1.4	73
93	From The Cover: Cross-modal integration in a dart-poison frog. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2425-2429.	3.3	132
94	Recent advances in behavioral neuroendocrinology: Insights from studies on birds. Hormones and Behavior, 2005, 48, 461-473.	1.0	66
95	Dehydroepiandrosterone Metabolism by 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase in Adult Zebra Finch Brain: Sex Difference and Rapid Effect of Stress. Endocrinology, 2004, 145, 1668-1677.	1.4	121
96	Estrogen contributes to seasonal plasticity of the adult avian song control system. Journal of Neurobiology, 2004, 58, 413-422.	3.7	66
97	Territorial aggression and hormones during the non-breeding season in a tropical bird. Hormones and Behavior, 2004, 45, 40-49.	1.0	149
98	Brain aromatase, 5?-reductase, and 5?-reductase change seasonally in wild male song sparrows: Relationship to aggressive and sexual behavior. Journal of Neurobiology, 2003, 56, 209-221.	3.7	170
99	Spring and Autumn Territoriality in Song Sparrows: Same Behavior, Different Mechanisms?. Integrative and Comparative Biology, 2002, 42, 11-20.	0.9	80
100	Dehydroepiandrosterone (DHEA) Increases Territorial Song and the Size of an Associated Brain Region in a Male Songbird. Hormones and Behavior, 2002, 41, 203-212.	1.0	125
101	Avoiding the  Costs' of Testosterone: Ecological Bases of Hormone-Behavior Interactions. Brain, Behavior and Evolution, 2001, 57, 239-251.	0.9	478
102	Neurosteroids and brain sexual differentiation. Trends in Neurosciences, 2001, 24, 429-431.	4.2	60
103	Hippocampal volume does not change seasonally in a non food-storing songbird. NeuroReport, 2001, 12, 1925-1928.	0.6	11
104	Dehydroepiandrosterone in Songbird Plasma: Seasonal Regulation and Relationship to Territorial Aggression. General and Comparative Endocrinology, 2001, 123, 144-155.	0.8	175
105	Testosterone and Year-Round Territorial Aggression in a Tropical Bird. General and Comparative Endocrinology, 2000, 117, 20-33.	0.8	198
106	Acute and chronic effects of an aromatase inhibitor on territorial aggression in breeding and nonbreeding male song sparrows. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2000, 186, 759-769.	0.7	160
107	Oestrogen regulates male aggression in the non–breeding season. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 1089-1096.	1.2	179
108	Combined Aromatase Inhibitor and Antiandrogen Treatment Decreases Territorial Aggression in a Wild Songbird during the Nonbreeding Season. General and Comparative Endocrinology, 1999, 115, 442-453.	0.8	157

#	Article	IF	CITATIONS
109	Androgen-metabolizing enzymes show region-specific changes across the breeding season in the brain of a wild songbird. Journal of Neurobiology, 1999, 41, 176-188.	3.7	106
110	Seasonal changes in androgen receptor immunoreactivity in the song nucleus HVc of a wild bird. Journal of Comparative Neurology, 1999, 409, 224-236.	0.9	120
111	The Hypothalamus and Adrenal Regulate Modulation of Corticosterone Release in Redpolls (Carduelis) Tj ETQq1 1	. 0.784314 0.8	1 1 rgBT /Ov <mark>e</mark> r
112	Changes in pituitary and adrenal sensitivities allow the snow bunting (Plectrophenax nivalis), an Arctic-breeding song bird, to modulate corticosterone release seasonally. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 1998, 168, 353-358.	0.7	67
113	Hormones and Territorial Behavior during Breeding in Snow Buntings (Plectrophenax nivalis): An Arctic-Breeding Songbird. Hormones and Behavior, 1998, 33, 40-47.	1.0	49
114	Territorial Behavior, Hormonal Changes, and Body Condition in an Arctic-Breeding Song Bird, the Redpoll (Carduelis Flammea). Behaviour, 1997, 134, 727-747.	0.4	17
115	Androgen Regulation of Hypothalamic Neurons Containing Gonadotropin-Releasing Hormone in a Cichlid Fish: Integration with Social Cues. Hormones and Behavior, 1996, 30, 216-226.	1.0	81
116	Social regulation of the brain-pituitary-gonadal axis Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7794-7798.	3.3	199