Jun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8219765/publications.pdf

Version: 2024-02-01

		1040056	996975
35	278	9	15
papers	citations	h-index	g-index
35	35	35	193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research on a Low-Magnetic Field High-Efficiency Transit-Time Oscillator With Two Bunchers. IEEE Transactions on Plasma Science, 2022, 50, 656-661.	1.3	4
2	Experimental Research of the V-Band High Power Microwave Generation With Coaxial Cerenkov Oscillator. IEEE Electron Device Letters, 2022, 43, 288-291.	3.9	4
3	MHz Repetition Frequency, Hundreds Kilowatt, and Sub-Nanosecond Agile Pulse Generation Based on Linear 4H-SiC Photoconductive Semiconductor. IEEE Transactions on Electron Devices, 2022, 69, 597-603.	3.0	18
4	Modular Integration of a Compact Ku-Band Relativistic Triaxial Klystron Amplifier Packaged With Permanent Magnets for High-Power Microwave Generation. IEEE Journal of the Electron Devices Society, 2022, 10, 212-223.	2.1	1
5	Domain Adaptation for Semi-Supervised Ship Detection in SAR Images. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	17
6	Wide-Range Frequency-Agile Microwave Generation up to 10 GHz Based on Vanadium-Compensated 4H-SiC Photoconductive Semiconductor Switch. IEEE Electron Device Letters, 2022, 43, 1013-1016.	3.9	9
7	Learning Slimming SAR Ship Object Detector Through Network Pruning and Knowledge Distillation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 1267-1282.	4.9	58
8	A two-buncher high-efficiency transit-time oscillator with a low guiding magnetic field. AIP Advances, 2021, 11, 065127.	1.3	0
9	Experimental Generation of 1.1-kA Gyrating Electron Beam Current From an Explosive Emission Cathode Magnetron Injection Gun. IEEE Transactions on Electron Devices, 2021, 68, 4664-4668.	3.0	3
10	Design \hat{A} of a large-radius high impedance intense current diode based on gradient magnetic field. AIP Advances, 2021, 11, .	1.3	3
11	A Coaxial High Power Output Cavity Operating in Hybrid TMâ,€â,•TMâ,€â,, Modes for Repetitive Operation. IEEE Electron Device Letters, 2021, 42, 1551-1554.	3.9	7
12	Efficiency Enhancement of a High Power Radial-Line Relativistic Klystron Amplifier Driven by Disk Intense Electron Beam. IEEE Transactions on Electron Devices, 2021 , , 1 -7.	3.0	2
13	A high-efficiency cross-band Cerenkov microwave generator with a resonant reflector. AIP Advances, 2021, 11, .	1.3	2
14	A Cerenkov microwave generator with cross-band frequency hopping based on magnetic field tuning. Physics of Plasmas, 2020, 27, .	1.9	4
15	Design and preliminary experiment of a disk-beam relativistic klystron amplifier for Ku-band long-pulse high power microwave radiation. Physics of Plasmas, 2020, 27, .	1.9	4
16	Preliminary experimental research of a Ka-band radial transit time oscillator. Review of Scientific Instruments, 2020, 91, 104701.	1.3	4
17	Numerical Computation of Resonant Frequency and Field Distribution Based on S-Parameters in the Open Coaxial Resonator. IEEE Transactions on Electron Devices, 2020, 67, 4437-4441.	3.0	1
18	Suppression of the Higher-Order Azimuthal Mode Competition in an \${X}\$ -Band Triaxial Klystron Amplifier With a Slotted Coaxial Waveguide. IEEE Transactions on Electron Devices, 2020, 67, 1215-1220.	3.0	9

#	Article	IF	Citations
19	An improved $\langle i \rangle X \langle j \rangle$ -band relativistic triaxial klystron amplifier with active suppression of asymmetric TM mode self-excitation. AIP Advances, 2020, 10, .	1.3	2
20	Suppression of High-Order Asymmetric Modes by Reflection Adjustment Method in Coaxial Slow Wave Structures. IEEE Transactions on Electron Devices, 2020, 67, 5771-5776.	3.0	1
21	A <i>V</i> Pand Overmoded Coaxial Millimeter-Wave Oscillator Based on a New Method of Asymmetric Modes Suppression. IEEE Transactions on Electron Devices, 2020, 67, 2573-2579.	3.0	9
22	Influence of the radial dimension on the high-frequency characteristics in the coaxial relativistic O-type Cherenkov oscillators. AIP Advances, 2020, 10, 045303.	1.3	1
23	Design and Optimization of Reflectors in a Relativistic Triaxial Klystron Amplifier. IEEE Transactions on Plasma Science, 2020, 48, 1923-1929.	1.3	5
24	Progress in narrowband high-power microwave sources. Physics of Plasmas, 2020, 27, .	1.9	46
25	Numerical Computation of Dispersion Curves for Both Symmetric and Asymmetric Modes in Metal Coaxial Slow Wave Structures. IEEE Transactions on Electron Devices, 2020, 67, 322-327.	3.0	7
26	A high power capacity Ka-band radial transit time oscillator with one-gap extraction cavity. AIP Advances, 2020, 10, 025107.	1.3	2
27	An improved corrugated waveguide mode purifier for TEM output in a V-band overmoded coaxial millimeter-wave oscillator. Physica Scripta, 2020, 95, 095508.	2.5	1
28	Suppression of the Parasitic Oscillations in an $\langle i \rangle X \langle j \rangle$ -Band Relativistic Coaxial Gyrotron Driven by an Intense Beam Current. IEEE Transactions on Electron Devices, 2020, 67, 5750-5754.	3.0	4
29	Cascaded Detection Framework Based on a Novel Backbone Network and Feature Fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12, 3480-3491.	4.9	11
30	A high-efficiency dual-band relativistic Cerenkov oscillator based on dual electron beams. Physics of Plasmas, 2019, 26, .	1.9	9
31	Investigation on "cold―and "hot―characteristics of different configurations of corrugated coaxial slow wave structures. AIP Advances, 2019, 9, 105208.	1.3	0
32	Analysis and Simulation of a Gigawatt-Class <i>Ka</i> Band Radial Transit Time Oscillator. IEEE Transactions on Electron Devices, 2019, 66, 3178-3183.	3.0	13
33	Development of a GW-Level Solid-State Long Pulse Generator. IEEE Transactions on Plasma Science, 2019, 47, 4512-4517.	1.3	7
34	Study on structural characteristics of Ka-band high power millimeter wave radial transit time oscillator. Physics of Plasmas, 2019, 26, .	1.9	5
35	Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode. Journal of Applied Physics, 2018, 123, .	2.5	5